
ProvideX

Contents iii
Preface v
1. Getting Started 9
2. Language Elements 19
3. Development Tools 47
4. Programming Constructs 69
5. File Handling 97
6. Graphical User Interfaces 129
7. Printing 217
8. Client-Server 239
9. External Components 249
10. Data Integration 313
11. Object-Oriented ProvideX 347
Appendix 381
Index 401

User’s Guide

Version 8.30

ProvideX is a trademark of Sage Software Canada Ltd.
All other products referred to in this document are trademarks or registered trademarks of their
respective trademark holders.

©2009 Sage Software Canada Ltd. — Printed in Canada
8920 Woodbine Ave. Suite 400, Markham, Ontario, Canada L3R 9W9

All rights reserved. Reproduction in whole or in part without permission is prohibited.

The capabilities, system requirements and/or compatibility with third-party products described herein
are subject to change without notice. Refer to the Sage ProvideX website www.pvx.com for
current information.

Publication Release: V8.30
May 27, 2009

ProvideX User’s Guide V8.30 Back iii

Contents

Preface
Using this Documentation . v
Conventions . vi

Chapter Outlines . viii

1. Getting Started
About ProvideX . 9
Installation and Setup . 11

ProvideX Environment .11
System Utilities . 16

2. Language Elements
Background . 19
Directives, Statements, and Programs 20

Primary Syntax Elements . 24
Data Types, Literals, and Variables 34

3. Development Tools
Writing and Modifying Program Code 47
ProvideX Plug-in for Eclipse 54

Error Handling and Debugging 56

4. Programming Constructs
General Concepts . 69
Flow Control . 72

Called Procedures . 81
Basic Input/Output . 87

5. File Handling
Data Files . 98
Processing Data Files .107
Embedded I/O Procedures . 118
File Naming Conventions .122
Prefix Processing .122
Foreign File Access .126

Views System . 127

Contents

ProvideX User’s Guide V8.30 Back iv

6. Graphical User Interfaces
Concepts and Terminology . 130
Interface Windows . 138
Control Objects . 150
Taskbar Notification Icon . 197

Display Objects .201
Example Programs .208
NOMADS .212

7. Printing
Printing in MS Windows . 221
Graphical Printing . 226
Character-Based Printing . 227
Print Drivers and Link Files 230

Logical Printers .233
Report Writer .236
Printing via Thin-Clients .238

8. Client-Server
Client-Server Deployment Options 240
Hosting Facilities . 242

Thin-Clients .243

9. External Components
Concepts and Terminology . 250
Calling DLLs from ProvideX 252
ProvideX COM Support . 261
Event-Driven COM . 294

JavX COM Support .301
ProvideX Type Library Browser 304
ProvideX OLE Server .309

10. Data Integration
Introduction to SQL . 314
External Databases . 320
ProvideX ODBC . 340

PVKIO - ProvideX I/O Library 343
XML Content .344

11. Object-Oriented ProvideX
Why use Object Oriented Programming? 347
General Concepts and Terminology 350

ProvideX OOP Interface .353
Putting It All Together .364

A. Appendix
Overview . 381
Security Features . 382
Device Drivers . 390

Handling Images and Icons 398

Index . 401

ProvideX User’s Guide V8.30 Back v

Preface

The ProvideX User’s guide contains general information on the ProvideX system, its
use, and the basic concepts required to develop ProvideX applications. Although this
volume is intended for application programmers and analysts, it does not try to explain
how to design or create applications – instead, it lays out the fundamental building
blocks necessary to create programs in ProvideX.

Refer to the ProvideX Language Reference for descriptive lists of ProvideX keywords
and concepts: directives, functions, system variables, mnemonics, parameters, specialty
files, reserved words and system limitations. Other ProvideX products (i.e., NOMADS,
WindX, JavX, the ODBC Driver, the WebServer, and the Application Server) are fully
documented in separate publications. Rather than reproduce existing material, references
to these publications are supplied where applicable.

Using this Documentation
U sing this Documentation

This documentation is designed for both viewing and printing via Acrobat® Reader.
Click Help > Reader Guide on the menu bar to learn how to display, copy, search,
and print PDF documentation. While there are several ways to navigate the contents
of a PDF-based document, the following methods are highly effective, and are
consistent with other documentation distributed by ProvideX:

Bookmarks
The list of bookmarks, displayed on the left side of the Acrobat window, serves as a
hyperlinked table of contents. Bookmarks are displayed in a hierarchy where subordinate
headings appear indented below main headings. When subordinates are hidden or
collapsed, a plus sign (in Windows) or triangle (in Mac OS) will appear next to the main
heading. Simply click on the plus sign or triangle to display all collapsed headings.

Preface Conventions

ProvideX User’s Guide V8.30 Back vi

Cross-References
Blue hyperlinks appear throughout this document wherever one section cross-references
another. They also appear in the form of hyperlists; such as the Table of Contents, the
Index, and the linked tables placed at the beginning of some chapters.

Navigat ion Tips

The mouse pointer looks like an index finger when it is positioned over a linked
cross-reference — simply click to activate the link. For example, "Using this
Documentation" is hyperlinked back to the beginning of this section.

Conventions Conventions

The following syntax items are used in this documentation to illustrate the format of
program statements in ProvideX.

PDF Navigation Tips: The chapter name at the top left corner of the page head can be
used as a hyperlink to the beginning of the chapter. Use the page-up/down/back/
forward buttons to move one page at a time. Use the Back button to
jump to the previous view.

... Dots indicate the continuation of a list of elements.

[] Square brackets enclose optional elements in the format. For example, in
ABS(num[,ERR=stmtref]) you can omit the ERR=stmtref portion of the
statement as in ABS(X-Y). (Exceptions are noted for individual commands
where the brackets are "real"; i.e., part of the syntax.)

{ } Curly brackets enclose a list of elements in syntax formats where it is
mandatory to select one item. For example, with {YES | NO}, you must
select either YES or NO. In descriptions in this manual, they denote
{bitmap / icon} buttons. (Exceptions are noted for individual commands
where the brackets are "real"; i.e., part of the syntax.)

 | Vertical bars (pipes) separate a choices; e.g., {YES | NO}.

chan Channel or logical file number. It must be an integer between 0 and 127. This
identifies the channel to which your directive applies; e.g., CLOSE (14).
• Channel zero (0) is the console. If you omit the channel, the system

defaults to 0 (the console).
• Channels 1 to 63 are commonly used for local files.
• Channels 64 to 127 are used for global files.
• Exception: In extended file mode ('XF' system parameter) the channels range

from 0-32767 for local files, and 32768-65000 for global files.

col,ln,
wth,ht

Position/coordinates. Numeric expressions. Column and line coordinates for
top left corner, width in number of columns, and height in number of lines.

ctrlopt,
fileopt

Optional syntax elements — three-character codes followed by an equals
sign and argument (DOM=3250).

Preface Conventions

ProvideX User’s Guide V8.30 Back vii

Numeric Expressions and Variables
When a syntax format in this manual includes a numeric variable like chan, index or
num (lowercase), you can normally substitute a numeric expression consisting of
variables, literals, functions, and operators. For instance, your value could be something
like HFN or 4 or NUM(A1$)*3-2. (NUM in upper case is the function.) When numeric
variables are used in numeric expressions, subscripts are allowed; e.g., COST[4].

Example:

To apply the format FOR var=first TO last[STEP val] ...

FOR I=1 TO 10 or
FOR LEAPS=-10 TO XYZ STEP ABC*.1

String Expressions and Variables
When a syntax format in this manual includes a string variable like prog_name$ or
title$, you can normally substitute a string expression consisting of variables, literals,
functions, and operators; e.g., PRINT "Printing "+REPORT$. When string
variables are used in string expressions, subscripts and substrings are allowed; e.g.,
CUSTOMER$(15,4).

Example:

For the CHECK_BOX READ [*]ctl_id,state$[,mode$][,ERR=stmtref] format, you
need string variables to receive the current state and optionally, the mode of
selection.

CHECK_BOX READ 14000,ON_OFF$,KEYSTROKE$

stmtref Statement reference. This can be either the line label or line number of a
statement in the current program. Line numbers must be in the range of 0
to 64999.

If your given line number does not exist, ProvideX goes to the statement
with the next higher line number. For example, if line 1000 doesn't exist
and 1010 is the next line number, then for GOTO 1000 ProvideX will go to
1010 and proceed with execution from there.

Exception: ProvideX verifies the existence of an IOList and stmtref for
IOL=stmtref. It does not proceed to the next higher statement number.

varlist List of comma-separated variables. Typically, a mix of string and/or
numeric variables is acceptable; e.g., DEPT,ITEM,DESC$... (See
individual directives for restrictions.)

Note: Exceptions and valid values are stated when there are restrictions on the use of
numeric or string expressions in a format (e.g., where only variable names are allowed).

Preface Chapter Outlines

ProvideX User’s Guide V8.30 Back viii

Chapter Outlines Chapter Outlines

Chapter 1. Getting Started, p.9. Introduces you to the ProvideX language and
development environment.

Chapter 2. Language Elements, p.19. Discusses basic concepts and the syntax
elements used for building applications in ProvideX.

Chapter 3. Development Tools, p.47. Provides an overview of the facilities used for
creating, modifying, and maintaining ProvideX program code.

Chapter 4. Programming Constructs, p.69. Examines flow control, input/output,
called procedures, and the ProvideX syntax for creating these types of instructions.

Chapter 5. File Handling, p.97. Covers opening, reading, writing , and closing files
and describes the various file types supported in ProvideX.

Chapter 6. Graphical User Interfaces, p.129. Discusses general concepts and the
syntax and development options in ProvideX for creating GUI applications.

Chapter 7. Printing, p.217. Lists and describes the methods available in ProvideX for
sending data to an output destination (device, interface, file format).

Chapter 8. Client-Server, p.239. Provides an overview of ProvideX client-server
functionality and explains the differences between available thin-client products.

Chapter 9. External Components, p.249. Documents facilities for accessing external
(third party) objects and custom controls in ProvideX applications.

Chapter 10. Data Integration, p.313. Discusses SQL and database concepts, and the
various methods in ProvideX for interfacing with common external databases.

Chapter 11. Object-Oriented ProvideX, p.347. Covers object-oriented coding and
syntax for the definition, creation, and implementation of classes/objects in ProvideX.

Index, p.401. Contains a comprehensive list of keyword references. As with the Table
of Contents, the page numbers in the Index are linked to the source.

ProvideX User’s Guide V8.30 Back 9

User’s Guide 1
Getting Started

Welcome to ProvideX ... a powerful, versatile, intuitive programming language and
integrated development environment for building sophisticated business applications.

About ProvideX, p.9
Product Options, p.10
Installation and Setup, p.11
ProvideX Environment, p.11
System Utilities, p.16

About ProvideX About ProvideX

The ProvideX software development environment is used around the world for
designing and building business applications. It includes a programming language,
database/file system, SQL-compliant ODBC drivers, graphical development toolkit,
web server, COM and thin-client interfaces, and much more – all designed to run on
a wide variety of computer systems (Windows, Linux, UNIX, and MAC-OS).

Unique Implementation
At the most elementary level, ProvideX is a system that interprets and executes
computer instructions written in the ProvideX language. Instructions may be entered
one statement at a time for immediate execution, or contained in a software program.
But, ProvideX programs can only be executed on systems where ProvideX is running.

ProvideX serves as both the development and runtime environment – it comprises
all the facilities needed to design, create, and run an application. This unique
implementation presents several distinct advantages (in program size, cohesion,
speed, maintainability, platform independence, and so on).

Complete Development Solution
All ProvideX components are highly optimized to work together. The application
language is closely tied to the database technology allowing for high-speed data
access. The graphical development environment is optimized to work with
thin-client technologies for universal access. When used together, the different

Topics

1. Getting Started About ProvideX

ProvideX User’s Guide V8.30 Back 10

components take advantage of a common architecture to provide maximum speed
and flexibility. Not only does this reduce the risk of incompatibilities between
various system components, but it also means that your product support comes from
a single source instead different (and indifferent) vendors.

ProvideX also adheres to the most widely-accepted software standards and protocols
(data, communications, security, etc.) in the industry. This allows for a high level of
extensibility and promotes the full integration of ProvideX applications into
non-ProvideX applications and vice versa.

Product Options
ProvideX can be configured for multiple uses (depending on the license and the
platform), but every installation begins with the base system that includes:

• ProvideX. Language interpreter and application development environment.

• NOMADS. Toolset for developing GUI-based applications (MS Windows).

• COM/OCX/ActiveX, DDE, DLL, ZLIB, SSL, PDF, etc. Built-in support for a number
of industry-standard technologies.

Extend the functionality of the ProvideX base system with a set of tightly integrated
application development and deployment solutions:

• WindX, JavX, and UltraFX. Thin-clients for displaying and interacting with
GUI-based ProvideX applications running from a server.

• Application Server. Secure configurable hosting facility for connecting thin-client
implementations via MS Windows, UNIX/Linux, and MAC OS X.

• Local and Client/Server ODBC. Open DataBase Connectivity (ODBC) for external
access to ProvideX databases.

• Web Server. Interface for producing ProvideX-coded websites that allow browser
access to ProvideX and ODBC data sources.

• Internet Toolkit. Utilities for developing e-mail/web-enabled applications.

• RPC. Remote Processing Capability for distributed processing of ProvideX.

• XML Support. Implementation for parsing and serializing XML documents.

• OCI, DB2, MySQL, ODBC. Native external database support.

• Smart Controls. Auto-load capability for list boxes/grids.

• Customizer. Utility for customizing panels dynamically without changing source.

• Multiple Image Support. Extended support for a variety of image file types.

• Report Writer. Powerful interface for designing and generating reports (runtime
module included with base system).

• Views. End-user "viewing" of application data for simplified extraction and
reporting (runtime module included with base system).

1. Getting Started Installation and Setup

ProvideX User’s Guide V8.30 Back 11

• Charting Control. Control object for creating advanced chart illustrations.

• OLE Server. Interface allowing external applications to access ProvideX objects directly.

Online Resources, Documentation, and Training
Sage provides a variety of opportunities for you to learn more about ProvideX. Check
our website (www.pvx.com) for the latest product announcements, documentation,
and training. Another valuable resource is the ProvideX mailing list – an online forum
for developers to share techniques, solve problems, and learn more about ProvideX.
Members of the ProvideX Technical Team monitor and participate in the discussions.

Installation and Setup Ins tallation and Setup

ProvideX can be obtained from your dealer/distributor or downloaded for direct
installation from the ProvideX website www.pvx.com. Browse the Downloads page
for a list of all available products, then click on the appropriate link to download and
save the installation file for your particular operating system. Refer to the ProvideX
Installation and Configuration guide for complete details.

Because ProvideX is an interpreted language, it is important to remember that
programs written in ProvideX can only be run on a system where ProvideX has been
installed. This is further explained in Chapter 2. Language Elements, p.19.

ProvideX Environment ProvideX Session

ProvideX has capabilities and features that make the process of program
development easier for both novice and expert users. When you are ready to
develop a program in ProvideX, you begin by starting a ProvideX session. This
serves as the environment where programming instructions are input, understood
and executed by the system. It is also where you create, load, modify, and execute
applications. Once the session is started, you can create a new application or load an
existing application for modification.

Tools for modifying and debugging programs are introduced in Chapter 4.
Programming Constructs, p.69; however, the basic start up and operation of the
ProvideX programming environment begins with the procedures described in the
sections that follow.

Note: These products may be sold as stand-alone add-on packages or as part of a
Professional or eCommerce bundle. Contact your local ProvideX dealer/distributor or
visit www.pvx.com for complete product information and licensing.

Note: For the purposes of this documentation we assume that ProvideX has been fully
installed for use on an MS Windows or UNIX/Linux system.

1. Getting Started ProvideX Environment

ProvideX User’s Guide V8.30 Back 12

Starting ProvideX in MS Windows
In MS Windows, you can invoke a session by clicking the ProvideX shortcut under
the Start > Programs > Sage Software Canada Ltd menu. This will start the
ProvideX session within a new interface window (console), as indicated below:

Click on the PVX icon at the top left corner of the window for a drop-down menu
that enables you to manipulate console properties and session-related actions; e.g.,
changing the font size changes the size of the console work area.

These and other settings are saved in the pvx.ini file each time ProvideX is terminated.

By default, the Help menu below the PVX icon contains links that will not function
properly until they are configured for use in an application.

1. Getting Started ProvideX Environment

ProvideX User’s Guide V8.30 Back 13

Starting ProvideX in UNIX/Linux
On a UNIX/Linux system (non-graphical environment), ProvideX can be started by
entering the command path (e.g., path/sage/pvx). The session opens with a serial
number and Sage Software Canada Ltd copyright notice, and is followed by the
ProvideX prompt, -> (or -} under WindX). At this point, ProvideX interposes itself
between you and the operating system and controls all work.

The options for starting an application are fully explained under Customizing
ProvideX in the ProvideX Installation and Configuration guide.

Modes of Operation

A ProvideX session is either in Command Mode or Execution Mode. The session
initializes in Command mode, as indicated by the standard ProvideX prompt ->.

This prompt represents a "pointer" to the session input area known as the command
line. It comprises two characters that may be altered by the system, depending on
the current input mode or the "state" of a currently loaded program. The standard
prompt, -> or -}, changes to -: when a program is being modified. It reverts back
once the program is saved. When a program has been interrupted due to an error,
the dash in the prompt changes to a number that indicates the current program level.

Command Mode
This is the state in which the system is "waiting for instructions" – in ProvideX, these
instructions are known as directives. When a valid directive is entered at the
command line, the system proceeds directly to execution; there are no intermediate
stages of compilation, assembly, or linkage. When execution is complete, the system
displays the result (if any) and awaits the next directive. Error messages pertaining
to the syntax of the input are displayed as soon as they occur.

If a directive has a leading line number, the system does not proceed to execution,
but uses the directive in the construction of a program. The ProvideX prompt
changes from -> to –: to indicate that the program is being edited (and not yet
saved). There may be other input modes during a ProvideX session (e.g., using an
editor, running an application); however, command mode is where the system
returns when these other tasks are completed.

Execution Mode
Execution mode begins whenever a RUN or a CALL directive is used to execute a
program during a ProvideX session. Some programs may be interactive and have a user
interface that awaits input from the user while being executed – programs remain in
Execution mode until completed via STOP or END, halted due to an error, or suspended
via - or an ESCAPE instruction.

Note: Programs may be created without using line numbers. However, numberless
programs must be edited and saved via Full-Screen Editors, p.51. For more
information, see Numberless Programs, p.47.

Ctrl Break

1. Getting Started ProvideX Environment

ProvideX User’s Guide V8.30 Back 14

Some ProvideX applications can be designed to start and run directly from an operating
system prompt/icon. These are actually launched using an initialization procedure that
"hides" the ProvideX session running underneath.

Refer to Chapter 2. Language Elements, p.19 for more on loading, executing, and
terminating programs in ProvideX.

Command Line Editing

The command line allows some basic editing functionality (but you cannot move
from line to line, page up/down). When entering text on the command line, most
edit keys function as per the normal operation of a standard keyboard:
deletes the preceding character, inserts a space, cursor (arrow) keys move
through the input, etc. In addition to the basic keyboard actions, the following key
combinations can be used for further editing and cursor functionality:

- clears input from the current cursor position to the end of the line.

 / - advances/backspaces 10 spaces over input.

-RIGHT-ARROW advances to next word.

-LEFT-ARROW moves to the previous word.

Command Shortcuts
ProvideX allows the following shortcuts for frequently-used language and console
commands:

BACKSPACE

SPACEBAR

Ctrl End

Tab Shift Tab

Ctrl

Ctrl

Note: More advanced editing features of the ProvideX development environment are
described in Chapter 3. Development Tools, p.47.

Key Function/Purpose
? Question mark substitutes the PRINT directive.
/ or \ Either forward or back slash substitutes the LIST directive.

` Back apostrophe substitutes the EDIT directive.

! Exclamation mark substitutes the REM directive for a comment.

. Period steps through a program. See Stepping Operations, p.62

; Semi-colon steps through compound statements.

" Double quote opens a shell to the operating system from ProvideX.

Note: The LET directive is assumed when ProvideX encounters a statement that begins
with a variable. Also, comma delimiters can be used to represent multiple LET directives
in a statement; e.g., Z4=A+4.5,Z5=Z4*.85.

1. Getting Started ProvideX Environment

ProvideX User’s Guide V8.30 Back 15

Typos and Alternate Spellings
The following alternate spellings are accepted without error (and corrected) when a
statement is processed:

• ProvideX automatically appends quotes where closing quotes are missing.
• LIST directive can be entered as LSIT without causing an error.
• LOAD directive can be entered as LAOD without causing an error.
• END_IF directive can also be entered as FI.
The above spellings/shortcuts are built-in. Use the USER_LEX directive to change
exisiting directive names in ProvideX.

Command Line Recall

A history of command line input is maintained by the system throughout a ProvideX
session. When a line is entered, the input is appended to the end of a buffer – the number
of lines preserved in the buffer is configurable using the 'SL'= system parameter. When
the buffer fills to capacity, the earliest lines are deleted to make room for new material.

Use the UP-ARROW (or DOWN-ARROW) key to select and recall lines to the ProvideX
prompt ->. Each recalled line can be edited and resubmitted by pressing ,
which has the same effect as typing and entering a new line at the prompt. You can
reuse only one logical line at a time.

Using the Mouse (Windows)

When running a ProvideX session in MS Windows, the mouse can be used to move
the cursor along the command line, copy and paste text, or activate the and Help
menu options.

Copy and Paste
Activate the Edit option from the drop-down menu to copy or paste text using the
mouse. An example of the console drop-down menu appears under the section
Starting ProvideX in MS Windows, p.12.

To copy (mark) text from the current session window into the Windows clipboard:

1. Select > Edit > Mark/Copy.
2. Drag the mouse pointer over the block of text you wish to copy.
3. Press .

To paste text from the Windows clipboard into the current session window:

1. Place the cursor at a location on the command line.

Enter

Note: While the initial console offers limited mouse support, the NOMADS toolset takes
full advantage of the functionality available when working in a graphical environment.
For more information, see Chapter 6. Graphical User Interfaces, p.129.

Enter

1. Getting Started System Utilities

ProvideX User’s Guide V8.30 Back 16

2. Select > Edit > Paste.

Exiting a ProvideX Session

A ProvideX session can be terminated using one of three directives: BYE, QUIT, or
RELEASE. When invoked from the command line, or used in an application, these
directives close all opened files, return all memory in use to the operating system, and
terminate the ProvideX session.

BYEQUITRELEA SE

On a Windows system, you can also click the (close) button on the top right side of
the ProvideX console to terminate the session and close the window.

If STOP or END are used in an application that was invoked directly by an operating
system command (bypassing Command mode), they will automatically terminate the
session and return you to the operating system.

STOP

System Utilities
ProvideX comes equipped with several utilities that are not, strictly speaking, part of
the language, but provide various design, configuration, maintenance, and
diagnostic services within the development environment. These are actually separate
programs that reside as auxiliary files in the PVX system sub-directory lib. All of
the utilities are installed with the ProvideX base system, but some were originally
designed for use in a character-based environment, some apply to a graphical
(Windows) system only, and some require a thorough understanding of ProvideX
internal code and may not be available for general use.

The majority of system utilities are intended for the creation, debugging, and
management of ProvideX programs, files, and directories. Editing and debugging
tools are covered in Chapter 3. Development Tools, p.47.

Command Line Utilities

The classic utilities subsystem comprises a set of system utilities that may be called
directly from the command line. These are all accessed using a leading asterisk * (e.g.,
the character-based editor is invoked by entering CALL "*e"). You can also access
these utilities via the function key, or by issuing a CALL "**", which displays a
set of menu-driven commands at the top of the console:

Selection:
Calculator Files Phone Utilities Edit Quit

Note: The drop-down menu can also be accessed directly (without using the
mouse) by pressing the - key combination. Alt SPACEBAR

F5

1. Getting Started System Utilities

ProvideX User’s Guide V8.30 Back 17

This character-based menu can be navigated using cursor keys or by moving the
mouse pointer (if available). Press (or left-click the mouse) to select one of the
options. The Utilities option (*u) directs you to a subsequent menu of character-
based utilities, grouped under the following major categories:

System Utilities:
Files Directories Programs Configuration General Quit

Where:

Select Quit or press the or keys to exit an opened utility and to move back
through the main menu.

Graphical Utilities
Graphical utilities are available for systems running ProvideX for Windows or via
WindX. They have all the capabilities of the classic character-based utilities plus
access to a few features that are specific to a GUI-based development environment;
i.e., the GUI-based Program Editor (*IT). Type gui at the command line to access
the System Utilities interface:

Files Options to create, delete, rename, view, update or otherwise
manipulate data files. (*uf)

Directories Options to create, delete, rename, or view directories. (*ud)

Programs Options to create, delete, rename, edit, list or otherwise
manipulate program files. (*up)

Configuration Alters the configuration of the ProvideX environment. (*uc)

General Accesses some general utilities. (*ug)

Enter

Esc F4

 List of available files

 Current working directory

Details about selected file

1. Getting Started System Utilities

ProvideX User’s Guide V8.30 Back 18

The initial panel displays your current working directory and allows you to select a
specific file for use in the utilities. Use the browse and folder buttons to
change the list of available files.

In the left pane, the file name, type, and time stamp is displayed for every file in the
current directory. The right pane provides further details about the file that is
currently highlighted in the list. This information is dependent on the type of file:
program, data file, link reference, or device. If the selected file is a ProvideX data file
containing a primary/alternate Embedded Data Dictionary then the two buttons
above the right pane will be enabled so that details of the file layout can be viewed.

Menu Bar
Various utilities can be invoked via the menu bar or by clicking the toolbar icons for
quick access to commonly-used selections:

Where:

NOMADS The Non-procedural Object Module Application Development System (NOMADS) is
an integrated suite of utilities that simplify the development of GUI-based
applications using ProvideX. NOMADS allows you to separate data access, logic,
and graphical controls into reusable segments, localize changes, design a graphical
front-end for character-based components, and create event-driven applications. The
toolset also includes a common data manager for consistent access to a variety of
data files as well as a generic error-handling interface. For more information on GUI
development in ProvideX, see Chapter 6. Graphical User Interfaces, p.129.

Files Displays a list of open files that can be sorted by file number, type, record
size, key length, path name, and Keyed/Indexed information.

Edit Opens the currently-selected file for editing in the GUI Program Editor.
Utilities Accesses a drop-down menu for system utilities, grouped under by major

categories: Files, Directories, Programs, Configuration, and General.
Tools Provides direct access to the Windows Calendar, Calculator, and Notepad.

Shortcut to the File View utility.

Shortcut to the File Update utility.

Shortcut to the Program Compare utility.

Shortcut to the Program Bulk Edit utility.

Shortcut for viewing available bitmaps.

Shortcut for viewing font and colour selections.

ProvideX User’s Guide V8.30 Back 19

User’s Guide 2
Language Elements

This chapter provides an overview of the basic concepts and elements used for
building ProvideX applications.

Directives, Statements, and Programs, p.20
Primary Syntax Elements, p.24
Data Types, Literals, and Variables, p.34

Background
While the language itself is easy to learn, the method of execution may seem a little
unusual for novices, particularly if they are used to compiled languages. ProvideX is
interpreted, which means it is executed directly from its source form:

• When a valid instruction is entered at the ProvideX console, it is evaluated for
syntax, converted to tokenized code, and then executed immediately.

• When several instructions are entered together in the form of a program, they are
evaluated for syntax, converted to tokenized code, and then stored in memory.

• A program can be executed directly from memory, or saved to a file for later use. All
program files are loaded and executed within the ProvideX session itself.

ProvideX is ideal for development, debugging and testing. By comparison, most
compiled languages require separate procedures for entering source and for
generating object code, which must be saved to a different file outside of the
development environment to be executed. Interpreted code is quicker, because it
requires fewer steps; i.e., enter + interpret instead of enter + compile + run.

tokenized

When ProvideX tokenizes source statements, each multi-character reserved word
and value is compressed into 1-byte tokens (ignoring white spaces). Maintaining
tokenized source uses far less memory and is much faster to interpret and execute
than working in the original format. When further editing is required, the tokenized
code is simply reconstructed back into readable text when displayed in ProvideX.

Topics

Important: If you are new to ProvideX, remember that applications written in
ProvideX can only be executed on systems that run a copy of ProvideX.

2. Language Elements Directives, Statements, and Programs

ProvideX User’s Guide V8.30 Back 20

Directives, Statements, and Programs
All processing in ProvideX is controlled by directives, keywords that "direct" the
system to perform certain tasks. Directives can be entered in Command mode to be
executed immediately (as described at the beginning of Chapter 1). They also
represent the core ingredient in the statements that constitute a ProvideX program.

In the session above, the PRINT directive is executed as soon as it is entered on the
command line. However, the line number inserted before the LET directive prevents
that input from being executed – when numbered statements are entered:

• the input is not executed, but added to a program in memory.
• the prompt changes from -> to –: to indicate that a program is being edited
• the series of numbered statements currently in memory will only be executed when a

RUN or CALL directive is issued.

Each statement can be made up of one or more directives. A ProvideX program
consists of a series of statements that are organized in a logical manner and stored
together in memory. When a program is executed, all the statements (and the
directives inside each statement) are evaluated and processed in the order in which
they are read by the system. Once the directives in one statement have been
executed, ProvideX proceeds to the next statement (next line of code) in the
sequence, and so on.

In theory, each program statement begins and terminates on one line – a carriage
return marks the end of a line of code, and ProvideX executes it as though it were
entered directly on the command line. However, as described later in this chapter,
there are exceptions to this rule; e.g., if the LIST EDIT directive is used to format
program code for readability, lengthy statements may be listed over several lines – the
line number representing the entire statement appears on the first line only.

Executed immediately.

Used in construction of a program.

Note: Some statements can alter the normal (top to bottom) flow of execution by
transferring control to other points in the program. This is explained in Chapter 4.

2. Language Elements Directives, Statements, and Programs

ProvideX User’s Guide V8.30 Back 21

Statement Syntax

A valid program statement requires at least one directive. Also, depending on the
directives used, various arguments and syntax elements may be needed to complete the
statement. The example below illustrates the format of a typical program statement:

0010 Total: PRINT a,b,c+d ! Totals

Where:

Arguments
While some directives are executed without arguments, most accept/require data or
keywords to perform their tasks. Argument components may be optional or
mandatory – this depends on the directive and the task involved.

Most arguments supply some form of data for processing – a text or numeric value
delivered in literal or variable form (see Data Types, Literals, and Variables, p.34).
Other types of arguments can redefine or augment the functionality of the directive itself
– system parameters, mnemonics, options, and built-in keywords. For more information,
see Primary Syntax Elements, p.24.

0010 Line Number (optional). Any integer between 1 and 64999. Each line
number must be unique – the best practice is to assign line numbers in
increments of 5 or 10 to allow for easy insertion of additional statements.
When a line number precedes a statement the statement will be included in
the construction of a program. See Line Numbers, p.72.

Total: Line Label (optional). Descriptive name up to 127 characters long,
followed by a colon. Alphanumeric line labels can be used in place of
line numbers to identify statements within the program.

PRINT Directive. Keyword identifying the task to be performed.

a,b,c+d Arguments (optional). Data to be processed or system keywords that
further define the directive. A space is required to separate the directive
from its arguments. See Arguments, below.

! Totals Comment (optional). Descriptive text beginning with an exclamation
point ! or the keyword REM. Text following an exclamation point is
ignored by the system; i.e., the exclamation point terminates a statement
and passes execution to the next line of code.

Note: Comments are very important for the readability and maintainability of a
program. However, this text is included in the final compiled program, so be aware
that excessive comments may increase memory requirements and degrade overall
system performance.

2. Language Elements Directives, Statements, and Programs

ProvideX User’s Guide V8.30 Back 22

Compound Statements
If more than one directive appears in a statement, it is considered a compound statement.
Semicolons are required to separate the different directives (and their arguments) until
the end of the line; e.g.,

0020 let x=a+b; print "Answer=",x; goto 1000

Each of the directives in a compound statement (between the semicolons) would function
the same if they were entered in sequence on separate lines.

A transfer of control into a compound statement starts processing from the first directive
only. In the above example (statement 0020) it would be impossible to start processing at
the PRINT or GOTO directive. However, it is possible to transfer control out of (and then
back into) a compound statement if the directive is designed to return back to the current
location (GOSUB/RETURN and FOR..NEXT); e.g.,

0030 x=10;print x; gosub xyz; goto 1000

Directives that transfer control without returning (e.g., GOTO, EXITTO, RETURN) must
appear at the end of a compound statement. The following is not valid because RETURN
transfers control and the last statement is unreachable code:

print "hello"; return; if name$<>"" print "-", name$

Some directives cannot be included in a compound statement. Restricted directives
are identified as they are documented in the Language Reference.

Saving, Loading, and Executing a Program

A ProvideX program is a collection of statements that are stored in memory (or saved to a
file) for consecutive execution. In Command mode, the current program represents all the
statements in memory that are immediately available for editing and/or execution. In
Execution mode, the current program is also referred to as the main-line program (also
known as execution level 1).

The current program can be RUN without being saved to a file. Once saved, a program
can also be RUN directly from a file. By default, program files are saved in a
semi-processed state that allows them to be executed as though they are already
loaded in memory. These pre-compiled tokenized program files are not readable in a
standard text editor and must be loaded into a ProvideX session for editing. For
information on working with text-based program files, see Text (ASCII) Format, p.23.

Whether you create a new program or LOAD an existing program from a file, all changes
you make to numbered statements at the command line will apply to the program
currently loaded in memory. The different methods for creating and saving ProvideX
programs are described under Writing and Modifying Program Code, p.47.

Saving a Program to a File
During a ProvideX session (in Command mode), the current program will cease to
exist if a START or DELETE is issued, or another program is loaded. All changes to the
current program will be lost.

2. Language Elements Directives, Statements, and Programs

ProvideX User’s Guide V8.30 Back 23

To retain your changes for later use, use the SAVE directive to copy the current
program to a file on disk; e.g.,

SAVE "Myprogram"

If the file name specified by Myprogram does not exist, a new program file is created
and the program is written to it. If a program exists with the same name, it will be
overwritten by the current program. Programs can also be saved in program libraries
(see [LIB] Program Library, in the Language Reference, p.777).

Retrieving a Program File
As mentioned earlier, programs that are saved to disk, may be recalled using the
LOAD directive. This clears the current program (if any) and replaces it with the
program specified; e.g.,

LOAD "Myprogram"

Executing a Program
The RUN directive can be used to execute the current program. If the RUN command
includes a program name, the system will automatically load the specified program from
disk before executing it; e.g.,

RUN "Myprogram"

Text (ASCII) Format
It is possible to RUN / CALL / PERFORM / LOAD and SAVE ProvideX programs in
text (ASCII) file format. If the target file for a SAVE is not a program file, ProvideX
will automatically write the program out in ASCII format; e.g.,

->DELETE
->0010 FOR I = 1 TO 20
->0020 PRINT I
->0030 NEXT
->SERIAL "PROG999"
->SAVE "PROG999"

This would output the program to the text file PROG999. If desired, you can insert
the keyword EDIT following the SAVE directive and the system will save the
program in formatted form. Text-based ProvideX programs do have some
advantages.

• Use of more advanced editing/formatting functionality that is available in other
types of editors (spell checking, multiple undo, etc.).

• Version control and configuration management systems.
• Accessing multiple files via bulk editing tools.

However, when running a text-based program from a ProvideX session, each
statement must be evaluated for syntax and converted to tokenized code prior to
execution. These extra steps may have an impact on system performance. One way
to avoid a performance hit is to LOAD a text-based program prior to executing it. At
this point, it can be RUN as the current program in memory.

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 24

Primary Syntax Elements
The ProvideX language uses standard set of keywords and symbols to deliver
instructions in a statement as well as to create/execute programs. Some of these are
required to make statements executable, while others are used to further define the
tasks and the data in the operation being performed. ProvideX keywords are reserved
for internal use by the system – they should never be used as variable names in
applications. The primary elements in the ProvideX language are grouped as follows:

Directives, p.24. Commands that tell the system what task is to be performed.
System Functions, p.25. Numeric or string operations that process values and yield results
within a program statement.
System Variables, p.28. Internally-defined numeric and string variables for providing
system information such as the date and time.
Mnemonics, p.30. Special control sequences for output to a display device or printer.
System Parameters, p.31. Options for controlling a system's operation under ProvideX.
Control Object Properties, p.31. Named attributes for modifying GUI control objects.

Refer to the Language Reference for complete syntax, along with detailed
descriptions, of all of the language elements recognized by ProvideX.

The language also reserves several keywords and symbols to be used as parameters,
qualifiers in a statement. See Other Syntax Elements, p.32. How these language
elements may be used to build programs in ProvideX is discussed in Chapter 4.
Programming Constructs. For a discussion on defining content to be manipulated
in a statement, see Data Types, Literals, and Variables, p.34.

Directives Commands that instruct the system to perform a task. A directive is the first keyword in a
valid program statement. There may be more than one directive in a statement. The list
below represents some of the more commonly-used directives:

Topics

BEGIN Re-initialize current session; close files, clear all non-Global variables,
release memory to the system (see also CLEAR, RESET).

START Reset files and variables (including global files and variables).
BYE Terminate session; close all opened files, return memory to the

operating system and terminate ProvideX; see also QUIT, RELEASE.
PRINT Send information to display or a file (if file number specified).
LET Assign value to a variable.
DUMP Print all variables in use (including system variable ERR), program

name, line number, and the FOR..NEXT / GOSUB stack.
LOAD Read a program into memory for execution, listing, or modification.
LIST Convert program statements to readable format and output to display

or file.
DELETE Remove lines from program or if no lines specified, unload program.
RUN Start or continue execution of a program.

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 25

For the complete list of directives, see Chapter 2 in the Language Reference.
STOP

Examples
The PRINT directive (or ? shortcut) displays a string literal at the console (with
output positioning determined via the @ function):
PRINT "HELLO WORLD"
? @(10,10),"HELLO WORLD"

The LET directive assigns values to a string variable and a global string variable:
LET X$="HELLO"
LET %X$= "JELLO"

The LOAD and the LIST directive are used to view a program (options for the LIST
directive include listing a range and displaying with indentation):
LOAD "**" *1
LIST
LIST 5100,5220 *2
LIST EDIT 5100,5220 *3

The DELETE directive removes lines from a program:

DELETE 5100,5220 *4

The DELETE directive removes the program from memory:

DELETE

The RUN directive loads and runs a program (END halts execution):

RUN "**
stop execution <ctrl+break>
END

System Functions

Numeric or string operations that process values and yield results within a program
statement. ProvideX system functions consist of a three-character name followed by
arguments in parenthesis; e.g., AND(A$,B$,ERR=0300). The following common
system functions can be applied to any Business BASIC expression.

END Terminate execution of program (functionally identical to STOP).
EDIT Change an existing statement.
SAVE Copy current program to file specified.
INPUT Issue prompt and process response.
CWDIR Change working directory.
GOSUB Transfer control to line referenced.
MSGBOX Display a message window in the middle of the screen.

ASC() Returns the internal numeric value of a given ASCII character.

CHR() Returns an ASCII character for a given numeric value.

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 26

For the complete list of functions, see Chapter 3 in the Language Reference.

Examples
The PRINT directive (or ? shortcut) displays system function results.

PRINT ASC ("A")
 65

PRINT CHR (65)
A

N=NUM("65");PRINT N + 1
 66

STR$="HELLO "+STR(N); PRINT STR$
HELLO 65

? DTE(0)
 11/20/08

DATE$=DTE(0:"%Dl %Ml %D/%Y"); PRINT DATE$
Thursday November 20/2008

?JUL(DAY)
 14203

NUM() Converts a string containing numeric characters into a corresponding
real numeric value (e.g., NUM("1.34") yields 1.34).

STR() Converts a numeric (or string) argument into a formatted string using
an optional masking argument (e.g., STR(5*6:"000") yields "030").

DTE() Converts a date argument from Julian form to a formatted string.

JUL() Converts a date argument from year, month, day values to Julian form;
this defaults to the current date if no value is supplied.

NUL() Tests argument and returns either 1 (true) or 0 (false) code for null string.

NOT() Returns the inverted value of a string or numeric (i.e., with all ON bits
turned OFF and vice versa).

CHG() Returns only the variables within the given argument that have
changed since the last CHG().

PTH() Returns the absolute path name for a given channel or logical file number.

STK() Returns the line number/program name executing at the level specified.

FFN() Checks all open files for a reference to specified filename and returns
the file number or -1 if the file is not open.

FID() Returns the file information descriptor for the file specified.

FIB() Returns the file information block descriptor for the file specified.

FIN() Returns detailed physical aspects of file specified.

TCB() Returns value regarding task information, activation/licensing, the OS.

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 27

DATE$=DTE(JUL(DAY):"%Y/%M/%D"); PRINT DATE$
 2008/11/20

Code sample using NUL() and NOT():

0010 INPUT "ENTER YOUR NAME: ",N$
0020 IF NUL(N$) THEN PRINT "YOUR NAME IS REQUIRED!"; GOTO 0010
0040 INPUT "ADDRESS: ",A$
0050 IF NOT(NUL(A$)) THEN GOTO DONE ELSE PRINT "ADDRESS PLEASE!"; GOTO 0040
0060 DONE: PRINT "BYE"
RUN

ENTER YOUR NAME:
YOUR NAME IS REQUIRED!
ENTER YOUR NAME: Anthony
ADDRESS:
ADDRESS PLEASE!
ADDRESS: 8920 Woodbine Ave
BYE

Using CHG():

0010 PRINT CHG("X,Y,A$,B$")
0020 LET X=666
0030 LET A$="HELLO WORLD"
0040 PRINT CHG("X,Y,A$,B$")
RUN
X,A$

Using FFN():

0010 LET X=FFN(".")! FFN returns channel number if the file is open
0020 IF X=-1 THEN LET X=HFN; OPEN (X)"."! if -1 then file is not open
0030 READ RECORD (X,END=DONE)R$
0040 PRINT R$; GOTO 0030
0050 DONE: PRINT "ALL DONE, BYE-BYE!"
0060 END
RUN
libeay32.dll
libharu.dll
license.txt

~snip~

pvxzlib1.dll
ssleay32.dll
windx
xerces-c_2_8.dll
ALL DONE, BYE-BYE!

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 28

Using FIN():

7210 GET_FILE_INFO:
7220 LET FILE$="."
7230 OPEN (1)FILE$; LET X$=FIN(1)
7250 LET TIME_STAMP$=X$(5,4),T=DEC(00+TIME_STAMP$),D=INT(T/86400),

T=T-D*86400
7260 LET SV_BY=PRM('BY'); SET_PARAM 'BY'=1970; LET TIME_STAMP$= " on

"+DTE(D,T/3600:"%Ws, %Ms %D %Yl at %hz:%mz:%sz"); SET_PARAM
'BY'=SV_BY

7270 PRINT FILE$+" last modified : "+TIME_STAMP$
7280 CLOSE (1)
RUN
. last modified : on Thu, Oct 9 2008 at 08:36:36

System Variables

Internally-defined numeric and string variables for providing system information such as the
date and time. All system variables have reserved three-character names. To avoid
potential conflicts with the reserved list we strongly recommend that you do not use
three-character names when defining your own program Variables.

The following system variables can be used wherever program variables are used
(but they cannot be assigned a value):

For a complete list, see Chapter 4 in the Language Reference.

LWD Current working directory.

TIM Current system time in hours past midnight; see also TMS.

PRM Current parameter settings for ProvideX.

SSN System software identifier.

WHO Current userid; see also UID.

QUO ASCII quote character ".

DLM Operating system path delimiter.

DAY System date in MM/DD/YY format (unless reset via DAY_FORMAT).

PGN Current program path name.

HFN Highest unused local file number; see also UNT.

ERR Value of the last error detected by the system.

SEP Providex record field separator.

CTL Code indicating how input was terminated.

EOM Character string that terminated last input.

MSE Current state (details) of the mouse.

LFA Number of last file accessed.

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 29

Examples
The PRINT directive (or ? shortcut) and system variables can be used to display
current system information.

? LWD
C:\Program Files\Sage Software\ ProvideX V8.30

? TIM
 11.055314

? PRM
-'3D',-'AD',-'AH','AI'=10,-'AP',-'AW',-'B0','BF'=10,'BL'=0,-'BT',-'BX','BY'=1970
,-'CD','CH'=12,'CI','CO'=4,'CS','CT'=0,'CU'=36,-'D0','DB'=31,-'DC','DF'=0,'DL'=0
,'DP'=46,'DT'=0,'DW'=0,-'EG','EL'=1,-'EO',-'ES',-'EX',-'F4','FB'=5,-'FC','FF'=0,
-'FI','FO'=0,-'FU',-'FL','FP','FS'=138,-'FT',-'FX',-'F,',-'I0',-'I2','IC',-'IM',
'IR','IS'=5,'IW',-'IZ','KF'=0,-'KR','LB'=4,-'LC',-'LD',-'LE',-'LM','LS'=1,-'LU',
-'LW',-'LZ','MB'=0,-'MC','MF'=50,-'MP',-'MX',-'NE',-'NI',-'NK',-'NL',-'NN',-'NR'
,-'OC','OL'=25,'OM',-'OP','OR','OW'=0,'PC'=0,'PD'=2,-'PE','PL'=10,-'PO','PP','PQ
'=100,-'PU','PW'=36,-'PZ','QD'=4,'QF'=1,'Q_'=2,'Q^'=2,'QK',-'QS',-'QT',-'RI','RN
'=1,'RP',-'RR',-'RS',-'SC',-'SD',-'SF',-'SK','SL'=32,-'SP',-'SR',-'SS','SV'=1,'S
W'=1,'SZ'=32000,'TA'=0,-'TB','TC'=0,'TH'=44,-'TL',-'TN',-'TT',-'TU',-'TX','UL',-
'VC','VP'=48,'VR'=0,'VW'=0,'WB','WD'=100,-'WF','WH'=0,'WI'=1000,-'WK','WT'=2,'WZ
'=512,-'XC',-'XF',-'XI',-'XT',-'ZP',-'DD','!B'=3,'!P'=0,'!U'=0,-'1U'

? SSN
 0829-001-0012345

? WHO
 akhodge

The QUO variable can be used to include quotes within a string:

PRINT "These are "+QUO+"QUOTES"+QUO
These are "QUOTES"

Applying DLM and QUO to a pathname:

SAVE "C:"+DLM+QUO+PVXTRAIN$+QUO+DLM+"TEST"

Using the DAY variable to get system date and the DAY_FORMAT directive to change
the display:

? DAY
11/20/08
DAY_FORMAT "YYYY/MM/DD"
? DAY
2008/11/20

Using HFN to open a file to the highest available channel:

LET MY_FN=HFN
OPEN (MY_FN)"."

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 30

Code sample using ERR to retrieve the number of the last error:

10 LET MY_FN=HFN
20 OPEN (MY_FN, ERR=OOPS)"my_file"; goto DONE
30 OOPS: PRINT "YOU MADE BOOBOO NUMBER "+STR(ERR)
40 DONE: END

Displaying the default separator (SEP):

PRINT SEP ! PVX executes the separator (carriage return & line feed).
PRINT HTA(SEP) ! HTA() function converts unprintable hex to ASCII.
PRINT "hello "+SEP+"world"

Retrieving the screen & mouse-position information using the MSE variable:

LET CUR_STAT$= MID(MSE,1,1) ! MID string function gives substring
PRINT HTA(CUR_STAT$)

System variables are generally read-only; however, certain ones (CTL, ERR, LFO, LFA,
EOM, REC) can have their contents modified via DEF sysvar= syntax; e.g.,

->PRINT ERR
0
->DEF ERR=12
->PRINT ERR
12

Mnemonics Special control sequences for output to a display device or printer. Mnemonic instructions
are inserted within a PRINT or INPUT statement, and are specific to the channel on
which they are defined. The language provides an extensive list of pre-defined
mnemonics, but additional 2-character mnemonics may be created via the
MNEMONIC directive. Commonly-used mnemonics include:

For the complete list of ProvideX mnemonics, see Chapter 5 of the Language
Reference. A listing based on mnemonic functionality is provided under Mnemonic
Categories in the Language Reference, p.579.

'CS' Clear screen.
'CH' Position cursor at home; i.e., @(0,0).
'RED' &
'_RED'

Input/output will be in red foreground or background. Refer to the
Language Reference for other colours.

'CE' Clear from cursor to end of screen.
'CL' Clear from cursor to end of line.
'DEFAULT'
or 'DF' Set current attributes as defaults (colour, foreground/background, etc.).

'RM' Reset to default attributes.
'BR' Begin reverse video mode.
'LF' Advance one line and return to column 0 (line feed).
'FF' Advance page(issue form feed).

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 31

Several examples of how mnemonics can be used for print and display output are
available throughout this document, most notably, in the following sections:

Controlling Output, p.96
Interface Windows, p.138
Display Objects, p.201
Chapter 7. Printing
Device Drivers, p.390.

System Parameters

Internally-defined options for setting up a system's operation or behaviour under ProvideX.
Most act as Boolean switches (0 or negative sign indicates off, 1 or no sign indicates
on), but some require specific values in order to be set. Commonly-used parameters
include the following:

For the complete list of system parameters, see Chapter 6 in the Language Reference.

Control Object Properties

Properties of ProvideX Control Objects (button, drop box, scrollbar ...) can be
referenced and modified dynamically using a control’s assigned CTL value (ctl_id)
followed by the apostrophe operator and an associated property name. Common
properties include:

For a complete list, refer to Chapter 7 in the Language Reference. For further
discussion on this subject, see Dynamic Control Properties, p.137 in this
document.

'FU' / 'FL' Convert all file/program name references to upper/lowercase.
'LC' LIST variables in lowercase.
'LD' LIST directives in lowercase.
'LE' LIST outputs indented program.
'NL' Suppress LET in program listing.
'PC'= Use program caching on LOAD.
'NE' Report errors occurring in subprograms.
'XT' Terminates ProvideX when program drops to Command mode.
'XI' Allows extracted records to be read by other ProvideX processes.

Col Screen position (column of control).
Lines Height in number of lines.
Tip$ Tip message
Msg$ Message line
Focus Focus indicator

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 32

Other Syntax Elements

Depending on the statement, other keywords may be required to provide data
characteristics, usage information, comments. The following syntax symbols also
have fixed meaning in ProvideX:

! Exclamation. ProvideX accepts an exclamation mark as a substitute for
the REM (remark); e.g., ! this remark. An exclamation mark as the
leading character of a string also denotes a ProvideX embedded bitmaps;
e.g., !STOP.

" Quotes. Standard quotation marks enclose string literals. A leading
quotation mark can also be used as a substitute for the INVOKE directive;
e.g., "NOTEPAD is the same as INVOKE "NOTEPAD".

$ Dollar sign. A dollar sign at the end of a variable name marks a string
variable; e.g., CUST$. Dollar signs can also enclose hexadecimal values,
for example $8A$.

' Apostrophe. Single quotation marks (apostrophes) enclose Mnemonics and
System Parameters, for instance 'TL' and 'CS'. The Apostrophe
Operator, is used to indicate a control object property.

; Semicolon. Directives and entry points are separated by semicolons in
program statements. When entered as the first character of a line,
ProvideX hides the line from line listings making it appear as if it did not
exist. The line will execute correctly, but it cannot be interrogated.

* Asterisk. ProvideX includes a number of auxiliary applications that are
stored under the LIB directory. The names of these utilities and
subsystems are preceded by an asterisk when accessed in ProvideX; e.g.,
*UPB, *IT. An asterisk may also have specific meaning in the syntax of
different directives or functions; e.g., as a wildcard character.

% Percent Sign. A percent sign before a variable name denotes a global
variable or function; e.g., %DEPT. A percent sign following a variable name
indicates that the variable is an integer; e.g., DEPT%. A variable name
having both leading and trailing percent signs denotes a global variable
for integer values; e.g., %DEPT%

*[] Asterisk + Square Brackets. The search utility (for searching programs in
console mode) is invoked by enclosing a search string within square
brackets preceded by an asterisk.; e.g.,
->*[print]
0090 REM Printing
0100 PRINT DAY
0120 PRINT "Today's date is ",DAY
0610 IF LEN(X$)>100 THEN PRINT "TOO LONG"; GOTO 0210

2. Language Elements Primary Syntax Elements

ProvideX User’s Guide V8.30 Back 33

*[]=[] Global search and replace can be used to make changes in programs in
console mode; e.g., *[CST$]=[CUST$] changes all instances of CST$ to
CUST$.

-:

->

-}

Prompts. When your ProvideX prompt is a dash with a colon, that
indicates that your current program has not been saved. After you save
your program, the prompt reverts to an arrow. Under WindX, the prompt
is a dash and a right brace.

/ or \ Slashes. ProvideX accepts either slash (forward or back) as a substitute for
LIST; e.g., / 30 is the same as LIST 30.

xxxx: String–trailing colon. Use a trailing colon to denote that your string is a
line label (statement reference, branch, entry point); e.g.,

0110 IF UPDATE$="Y" GOSUB CUSTOMER
...
2000 CUSTOMER:
2010 INPUT 'CS',@(5,5),"Enter customer number",CST
2020 ! REST OF ROUTINE ...
2200 RETURN

? Question Mark. ProvideX accepts a leading question mark as a substitute
for PRINT; e.g., ? CUST$ is the same as PRINT CUST$. ProvideX also
places a question mark between a line number and program statement to
denote a syntax error.

' Back Apostrophe. ProvideX accepts the back apostrophe as a substitute for
the EDIT directive..

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 34

Data Types, Literals, and Variables
All content to be manipulated and processed through a ProvideX program can be
categorized within one of two primary data types: Numeric Values, which are used
in calculations (i.e., account balances, prices, and quantities), and String Values,
which usually involve text-based information (i.e., account names, addresses, and
product descriptions). Most data is processed in the form of Variables; however
when constant values are required, numeric or string Literals can be written directly
into the program code.

Variables, p.34
Literals, p.36
Numeric Values, p.36
String Values, p.40
Composite Strings, p.44

For a discussion on how source data is accepted into a program for processing, or
where resultant data is sent from a program for storage or to be displayed, see Basic
Input/Output, p.87.

Variables A variable is a named location in memory that is used for storing data temporarily
during program execution. In ProvideX, the methods for creating/changing
variables include assigning (using the LET directive) and inputting (using INPUT or
READ). The data type is determined when the variable is created: either string or
numeric (not both). The initial value of a numeric variable is 0 zero. The initial value
of a string variable is a null string.

The two variable/data types are distinguished by the fact that string variables have
names that end with a $ dollar sign. In the following example, the numeric variable X
is assigned the number 1234 and string variable X$ is assigned the text "START
TEST, X=".

->LET X=1234,X$="START TEST, X="; PRINT X$,X

START TEST, X= 1234

The first character of a variable name must be alphabetic (A through Z), the
remaining characters may contain any of the following: A through Z, 0 through 9,
_ underscore, or . period. By default, variable names are not case-sensitive, but are
listed in uppercase only. The 'MC' and 'LC' parameters can be used to maintain
mixed or lowercase variable names in listings. Variable names cannot start with
FN, as this denotes a user-defined function; see DEF FN, p.85.

Topics

Note: There may be size limits imposed by the ProvideX activation or the operating
system on different types of string and numeric data. For a list of system limits, refer
to the Language Reference, p.821.

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 35

Variables should have unique names that do not conflict with ProvideX keywords. It
is also best to avoid three-character names – ProvideX reserves three-character
names for System Variables. For a complete list of reserved words, refer to the
Language Reference, p.823.

A % percent sign before a variable name is used to denote a global variable – a percent
sign following a variable name indicates that the contents is an integer. Every variable
in ProvideX is defined for a specific scope, which indicates to what extent the
variable can be accessed and used (local or global). Typically, a variable is only
visible to subroutines within the current program that created it.

Global Variables
The scope of a variable can be extended for "global" use if it is named with a leading
% percent sign; e.g., %VAR1 will be visible to all programs that are executed within a
given ProvideX session.

Remember that VAR1 and %VAR1 are two different variables. The variable named
VAR1 can be deleted at any time using a CLEAR or BEGIN directive; whereas, the one
named %VAR1, would remain active until the end of the user session or the execution
of a START directive.

Local Variables
The scope of a variable can also be narrowed for "local" use if it is declared using the
LOCAL directive. This means that an existing variable can be reassigned for the
duration of a specific subroutine, subprogram, for/next loop, or user-defined function.
The local declaration does not affect the original contents of the variable. If the variable
name is already in use, the system preserves the current value. Once the stack entry
has been removed, the system restores the variables to their original values.

LOCA L

In the following example, the variables X$, I, and N are declared LOCAL for the
duration of the subroutine:

0130 GOSUB 1000
....
1000 REM Subroutine 1
1010 LOCAL X$, I, N
1020 READ (1, KEY=K$) X$
1030 I = POS(","=X$)
1040 IF I <> 0 THEN X$(I,1)=" "; N++; GOTO 1040
1050 PRINT "There were ",n, " commas"
1060 RETURN

Original values will be restored upon execution of the RETURN directive. The local
declaration can also be placed in front of variables within a DEF FN definition; e.g.,

DEF FN%DATE$(LOCAL DT$) = DT$(1,2)+"/"+DT$(3,2)+"/"+DT$(5,2)

Note: Global variables can only exist within one session of ProvideX – they cannot be
shared or carried between sessions.

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 36

Literals Literals are numeric, string or hexadecimal values that are written directly into the
program code – they cannot be modified at runtime. While variables are meant to be
changed during processing, literal values remain read-only. Literals are commonly
used to display messages, assign constants, or place initial values into variables.

Two formats are supported for the definition of numeric literals in ProvideX: simple
numbers (signed, with/without decimal point) or floating point numbers (using
scientific notation). String literals consist of a series of ASCII characters contained
within "" quotation marks.

The various formats used in the definition of numeric and string values are further
described in the sections that follow.

Numeric Values

The numeric data type defines values that are used primarily in mathematical
operations. In ProvideX, these values can appear in the form of literals, variables,
expressions, functions, and arrays from 1 to 3 dimensions. When numeric data is
output, it can include formatting, such as commas ('TH'=), decimal points ('DP'=),
and currency symbols ('CU'=). For more information, refer to the SET_PARAM
directive and System Parameters, p.651 in the Language Reference.

The most common format for a numeric value is as a simple number consisting of a
sign, followed by series of digits and optional decimal point; e.g.,

7 3.1415 -13.210 .333 -934.

By default, ProvideX maintains a precision of 2 (digits to the right of the decimal).
During calculations, numeric values are rounded to the currently set precision. The
default can be reset (up to 18 digits) using the PRECISION directive.

The rounding of numeric values is controlled using the ROUND directive. If
rounding is set to the default, a divide operation in ProvideX will maintain the
precision of the starting value; e.g., 1014.475/100 becomes 10.14475 which gets
rounded to 10.145. The automatic rounding of intermediate results can be turned
off by setting the 'NR' parameter. Various other types of rounding can be controlled
using the 'RN'= parameter.

Use the FLOATING POINT directive to set numeric data to scientific notation. Floating
point values take the following format:

{+-} x.xxxxxE {+-} nn

where x.xxxxx is a number multiplied by ten (10) raised to the power of nn. The
following numeric values are expressed in different formats:

3 = 3E+00 = 0.3E+01
2.78 = 0.278E+01 = 278E-02
1000 = 1E+03 = 0.1E+04

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 37

Numeric Variables
The initial value of any numeric variable is 0 zero. Numeric variables that are named
with a trailing % percent sign are restricted for use with integers only; e.g., COUNT%. If
set to a fractional value, the fractional part will be truncated; e.g.,

-:x%=1.8
-:?x%
1

ProvideX includes a set of system variables that provide access to internally-defined
numeric values such as time, memory size, etc. These may be referenced like any
other variable but can never be altered by the program. For the complete list, see
System Variables, p.553 in the Language Reference.

Numeric Arrays
Numeric arrays provide the ability to handle numeric lists, tables, or matrices.
Arrays are created using the DIM directive. This directive defines the array’s name,
number of dimensions (one, two, or three), and minimum to maximum subscript in
each dimension.

The names given to arrays are completely independent of the names associated with
numeric variables; e.g., a variable named X1 would have no relationship to an array
with the name X1. However, the conventions regarding the naming of numeric
variables apply as well to array variables. Unless specified, arrays are zero-based.

DIM X[4] yields a one-dimensional array X with 5 elements:

DIM X[1:4] defines a one-dimensional array X with 4 elements:

DIM Y[2,5] defines a two-dimensional array Y with 18 elements:

DIM Y[1:2,1:5] defines a two-dimensional array with 10 elements:

Access to an entry within a numeric array is specified using the array name followed
by array subscripts (contained within square or round parentheses). The subscripts
may be specified as Literals, Variables, or Numeric Expressions; e.g.,

X[0] X[1] X[2] X[3] X[4]

X[1] X[2] X[3] X[4]

Y[0,0] Y[0,1] Y[0,2] Y[0,3] Y[0,4] Y[0,5]

Y[1,0] Y[1,1] Y[1,2] Y[1,3] Y[1,4] Y[1,5]

Y[2,0] Y[2,1] Y[2,2] Y[2,3] Y[2,4] Y[2,5]

Y[1,1] Y[1,2] Y[1,3] Y[1,4] Y[1,5]

Y[2,1] Y[2,2] Y[2,3] Y[2,4] Y[2,5]

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 38

A(3) CUST[6,A] TABLE(A*5) Z(3,A(M,N,O))

Attempting to use non-integer subscript results in an Error #41: Invalid
integer encountered (range error or non-integer). Specifying
subscripts on a variable for which no array has been defined yields an error.

Use the DIM() function to determine information about array dimensions; e.g.,

-:DIM X[1:10]
-:PRINT DIM(READ NUM(X)) ! Read total number of elements
10
-:PRINT DIM(READ MIN(X)) ! Read minimum element number
1
-:PRINT DIM(READ MAX(X)) ! Read maximum element number
10

To access a range of entries, specify the array name followed by subscripts ranging
from : to (or ALL) enclosed in braces instead of parentheses; e.g.,

The element positions in an array can be shifted/rearranged using a combination of
subscripts (literals, variables, expressions and ranges); e.g.,

Numeric Expressions
A numeric expression can consist of numeric constants, variables, functions, and/or
other numeric expressions each separated by arithmetic or logical operators. Refer to
the footnotes for further information on the listed numeric operations. The following
operators are grouped by order of precedence (See):

Auto-Increment/Decrement (See).

Exponentiation (See).

Multiplication, Division, Modulus (See).

Assigning a value to an entire array: LET A{ALL}=10
Assigning a value to a range of array elements: LET A{1:5}=10
Copying the contents of one array into another: LET A{ALL}=B{ALL}
Assigning a range of values from one array to another: LET A{1:5}=A{6:10}

Shift up by deleting at subscript P: X{P:ElementCount}=X{P+1:ElementCount+1}
Shift down by inserting at subscript P: X{ElementCount+1:P+1}=X{ElementCount:P}

X[P]=NewValue

++ ++var1 pre-increments by 1, var1++ post-increments by 1.
– – --var1 pre-decrements by 1, var1-- post-decrements by 1.

^ A ^ B raises A to the power of B (** is equivalent to ^).

* A * B multiplies A by B.
/ A / B divides A by B.
| A | B remainder resulting when A is divided by B .

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 39

Addition, Subtraction (See).

Relational (See).

Logical (See).

Footnotes:

+ A + B adds A to B.
– A - B subtracts B from A.

= A = B yields 1 if A and B are equal, else yields 0 zero.
< A < B yields 1 if A is less than B, else yields 0 zero.
> A > B yields 1 if A is greater than B, else yields 0 zero.

<> A <> B yields 1 if the A and B are not equal, else yields 0 zero.
<= A <= B yields 1 if A is less than or equal to B, else yields 0 zero.
>= A >= B yields 1 if A is greater than or equal to B, else yields 0 zero.

AND A AND B yields 1 if both values are non-zero, else yields 0 zero.
OR A OR B yields 1 if either values are non-zero, else yields 0 zero.

Precedence. If two operators of equal precedence occur, execution takes place
left to right. In the following expression,
A + B - C * D

C and D are first multiplied together and the result saved; A and B are then
added together; and finally, the saved value (C*D) is subtracted.

Round parentheses () may be used to change the order of evaluation. The
expressions within parentheses are evaluated first. Where parentheses are
nested, as in the following expression,
(A ^ (B * (A + 2)))

the innermost parenthesized expression (A + 2) is evaluated first. The use of
parentheses is encouraged in complex expressions in order to make these
expressions more readable and easier to understand.

Auto-Increment / Decrement. If an error occurs during execution of a directive,
no increment or decrement (++ or – –) takes place. This is true for both pre-
and post- operations.
With pre-increment/decrement, the value returned is the value of the variable
after the increment or decrement. With post-increment/decrement, the value
returned is the value of the variable before the increment or decrement. After
your directive is executed, your variable is incremented or decremented by 1.

Example:

A=0, Y$=""
READ (1,IND=A++,ERR=*NEXT)X$; Y$+=X$; GOTO *SAME

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 40

Numeric System Functions
ProvideX includes various internal functions that return numeric values based on the
parameters provided. System functions can be used to evaluate or convert specific
values, but many of them perform built-in mathematical (arithmetical or algebraic)
calculations. These include trigonometry (SIN(), COS(), TAN(), ASN(), ACS(), ATN(
)), logical comparison (AND(), IOR(), XOR(), NOT()), and several other numeric
operations (EPT(), EXP(), LOG(), MAX(), MIN(), MOD(), PRC(), SQR()).

For details, refer to System Functions, p.387 in the Language Reference.

String Values

The string data type defines values that represent any sequence of displayable
characters (letters, numbers, spaces, punctuation symbols, etc.). Strings typically
contain ASCII data but may contain any sequence of 8-bit bytes of data. In ProvideX,
these values can appear in the form of literals, variables, arrays, and substrings.
String manipulation facilities include concatenation, comparing, scanning and
conversion.

String literals must be contained within "" quotation marks. Spaces within the
quotation marks are considered an integral part of the string; i.e.,

" Sage Software Ltd. " is not the same as "Sage Software Ltd."

In order to include an actual quotation mark symbol within a string literal, two
quotation marks must be specified back-to-back; e.g.,

"My name is ""Joe""" produces the result My name is "Joe"

Assignment Operators. ProvideX supports an alternate notation for defining
numeric expressions that result in assignments. A combination of a numeric
operator (+ - * / | ^) with an = equals sign is used to form shorthand
expressions; e.g., A+=1 is equivalent to the expression A=A+1, and B^=A is
equivalent to the expression B=B^A.

See Assignment Operators, p.818, in the Language Reference.

Relational Operators. <>, <=, and >= may be entered as ><, =<, and =>
respectively.

Logical Operators. When ProvideX encounters either an AND or an OR logical
operator, it attempts to perform a shortcut in the evaluation of the expression.
If the value to the left of an AND operator is zero (false) then the
expression/value on the right is skipped and the relationship returns 0 zero. If
the value to the left of an OR is non-zero then the expression/value on the right
is skipped and the relationship returns 1.

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 41

Hexadecimal String Literals
Hexadecimal string literals provide the ability to define a string of data which may
contain other than displayable ASCII characters. In ProvideX, a hexadecimal string is
delimited by two dollar signs. A single character is defined by a pair of hexadecimal
digits (0-9, A-F) with each pair representing a single byte of data. The following are
examples of hexadecimal strings:

414243 = "ABC"
30313233 = "0123"
$0D0A$ = Carriage Return / Line feed.

String Variables
The name of a string variable is always terminated by a single $ dollar sign; e.g.,

A$ Name$ CUST_ADR$
User.ID$ X1$ WEEK_DAY$

A null string is defined as a string that contains no data, in other words a string that
is set to "" or $$ and whose length is 0 zero. Initially all string variables are defined
as null strings. String variables can also be defined via the DIM directive, which
allows the programmer to define the length (and contents) of a string variable.

ProvideX includes a set of system variables that provide access to internally-defined
string values such as formatted date, pathname, etc. These may be referenced like
any other variable but are generally read only. For the complete list, see System
Variables, p.553 in the Language Reference.

String Arrays
String arrays, like Numeric Arrays, provide the ability to handle lists, tables, or
matrices. They are also defined and referenced in the same manner as numeric arrays;
The only distinguishing feature between the two types of arrays is that string array
names always end with a $ dollar sign.

Arrays are created using the DIM directive. This directive defines the array’s name,
number of dimensions (one, two, or three), and minimum to maximum subscript in
each dimension. For example, a one-dimensional array with the name ADR$ with
eleven elements would be defined as follows:

DIM ADR$[10]

Access to an entry within a string array is specified by the array name followed by
the array subscript (contained within square brackets). The subscripts may be
specified as Literals or Variables.

Use the DIM() function to determine information about array dimensions; e.g.,

-:DIM X$[1:10]
-:PRINT DIM(READ NUM(X$)) ! Read total number of elements
10
-:PRINT DIM(READ MIN(X$)) ! Read minimum element number
1

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 42

-:PRINT DIM(READ MAX(X$)) ! Read maximum element number
10

To access a range of entries, specify the string array name followed by subscripts
ranging from : to (or ALL) using braces instead of parentheses; e.g.,

The element positions in an array can be shifted/rearranged using a combination of
subscripts (literals, variables, expressions and ranges); e.g.,

Substrings
A substring consists of a portion of a string variable. Substrings are accessed by
specifying the string variable followed by the starting character position within the
string and (optionally) the length of the substring enclosed by parentheses. If no
length is specified, then the substring consists of all characters from the starting
character up to and including the last character within the string. For example, if
string A$ contains "ABCDEFGHIJK", then the following are valid:

A$(1,1) = "A"
A$(3,4) = "CDEF"
A$(4) = "DEFGHIJK"

A substring must not exceed the current size of the string variable it references. If a
variable Z$ contains "ABC", then Z$(3,2) would be invalid (resulting in Error
#46: Length of string invalid). One exception to this rule would be the
substring Z$(4) or Z$(4,0), which would equate to a null string. To avoid Error
#46, the MID() function can also be used to return a substring.

Substrings may be used wherever a string variable is used. When the value being
assigned to a substring is less than the length of the substring, it will be padded with
space characters. If the string is longer it will be truncated.

The following examples assume string A$ contains "ABCDEF":

LET A$(2,2) = "XX" yields A$="AXXDEF"
LET A$(2,2) = "X" yields A$="AX DEF"
LET A$(2,2) = "XXX" yields A$="AXXDEF"
LET A$(2) = "X" yields A$="AX "

Substrings can also be used on string arrays by specifying both the array element
(within square brackets) and the substring (within parentheses); e.g.,

ADDR$[1,2](2,3)

The above substring indicates characters 2 through 4 of element 1,2.

Assigning a value to an entire array: LET A${ALL}="ABC"
Assigning a value to a range of array elements: LET A${1:5}="ABC"
Copying the contents of one array into another: LET A${ALL}=B${ALL}
Assigning a range of values from one array to another: LET A${1:5}=B${6:10}

Shift up by deleting at subscript P: X${P:ElementCount}=X${P+1:ElementCount+1}
Shift down by inserting at subscript P: X${ElementCount+1:P+1}=X${ElementCount:P}

X$[P]=NewValue$

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 43

String Concatenation
The mathematical + plus operator can be used to concatenate strings. When two
strings are concatenated, the resultant string consists of the contents of the string left
of the +, followed immediately by the contents of the string to the right; e.g.,

->x$="hello"+"world";print x$
helloworld
->a$="Sage Software",b$="Canada Ltd."
->print a$+" "+b$
"Sage Software Canada Ltd."

Any number of strings may be concatenated as long as the total length of the
resultant string does not exceed current System Limits.

String Comparison
The following relational operators can be used to compare two strings:

 <>, <=, and >= may be entered as ><, =<, and => respectively.

In string comparisons, each character in one string is compared to the corresponding
character in another string, to yield a binary result. The comparison is performed on
the internal binary value of each byte.

When comparing strings of unequal lengths (and the longer string matches the
shorter string for the full length of the shorter string), the longer string is considered
the greater of the two strings; e.g.,

"Sage Software" is always less than "Sage Software Canada Ltd."

String System Functions
ProvideX includes various internal functions that return string values based on the
parameters provided. System functions can be used to evaluate, convert, and format
strings, or to determine system and file information. For details refer to System
Functions, p.387 in the Language Reference.

= A$ = B$ yields 1 if A$ and B$ are equal, else yields 0 zero.
< A$ < B$ yields 1 if A$ is less than B$, else yields 0 zero.
> A$ > B$ yields 1 if A$ is greater than B$, else yields 0 zero.

<> A$ <> B$ yields 1 if the A$ and B$ are not equal, else yields 0 zero.
<= A$ <= B$ yields 1 if A$ is less than or equal to B$, else yields 0 zero.
>= A$ >= B$ yields 1 if A$ is greater than or equal to B$, else yields 0 zero.

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 44

Composite Strings

ProvideX provides the ability to define strings as a collection of data elements. These
strings are called composite strings. A composite string is basically a record defined
by an IOLIST statement consisting of variables and associated formats used to create
the string. Assigning data to a composite string causes the elements defined in the
IOList to be loaded with their associated values. Referencing a composite string
returns all the variables in their respective formats as defined by the IOList, thus it
can be considered a logical record or structure.

Defining a Composite string
The ProvideX DIM directive is used to define a composite string. Provide the name
of the string variable, a colon, then the associated IOList.

For example, to define a composite string consisting of 4 variables:

0100 DIM X$:IOL=1000
1000 IOLIST A$,B$,X,Y

or

0100 X_IOL$=PGM(1000); DIM X$:X_IOL$
1000 IOLIST A$,B$,X,Y

or

0100 DIM X$:CPL("IOLIST A$,B$,X,Y")

Unlike normal IOLists, the variables referenced in a composite string will be prefixed
with the name of the composite string. Therefore, the variables in the above example
referenced by X$ are not A$, B$, X, and Y but rather X.A$, X.B$, X.X, and X.Y. This
is comparable to the REC= option found in input/output directives (see Processing
Data Files , p.117).

Referencing a Composite String
When a program references a composite string, it will receive a string comprised of
the variables defined in the IOList.

Example 1:

Given the following composite definition and values

0100 DIM X$:IOL=1000
1000 IOLIST A$,B$,X,Y
X.A$="CAT", X.B$="DOG", X.X=1,X.Y=2

Referencing X$ will yield:

CAT-SEP-DOG-SEP-1-SEP-2-SEP-

Since the IOList specified general formatting of the data, each field was placed in
ASCII in the output with a standard field separator (-SEP-) between them.

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 45

Example 2:

Given the following:

0100 DIM CST$:IOL=1000
1000 IOLIST NAME$:[CHR(20)],ADR1$:[CHR(20)]

CST.NAME$="Sage Canada"
CST.ADR1$="8920 Woodbine"

Referencing CST$ will yield:

"Sage Canada 8920 Woodbine "

Since the IOList specified formatting, the output consists of the name (NAME$)
padded to 20 characters followed by a 20 character address (ADR1$).

Assigning Data to a Composite String
When a program updates a composite string, the variables that make up the
composite will be updated automatically.

Example 1:

Given the following composite definition and values.

0100 DIM X$:IOL=1000
1000 IOLIST A$,B$,X,Y

X$="SAGE"+SEP+"PROVIDEX"+SEP+"123"

Will result in:

X.A$="SAGE"
X.B$="PROVIDEX"
X.X = 123
X.Y = 0

Since the data assigned to the composite string X$ only contains 3 fields, the fourth
field (X.Y) will be set to zero.

Example 2:

Given the following:

0100 DIM CST$:IOL=1000
1000 IOLIST NAME$:[CHR(20)],ADR1$:[CHR(20)]

CST.NAME$="Sage Canada"
CST.ADR1$="8920 Woodbine"

LET CST$(1,20)=""

The above LET will result in the field CST.NAME$ being set to a null string.

2. Language Elements Data Types, Literals, and Variables

ProvideX User’s Guide V8.30 Back 46

ProvideX User’s Guide V8.30 Back 47

User’s Guide 3
 Development Tools

The ProvideX development environment is equipped with a number of facilities for
creating, modifying, and maintaining ProvideX program code.

Command Line Editing, p.48
Full-Screen Editors, p.51
ProvideX Plug-in for Eclipse, p.54
Error Handling and Debugging, p.56

Writing and Modifying Program Code
While ProvideX allows external methods for writing source instructions, a program
cannot be converted to tokenized code and executed unless it exists within an active
ProvideX session. In Command mode, the current program represents all the statements
in memory that are immediately available for editing and/or execution. In Execution
mode, the current program is also called the main-line program (execution level 1).

Whether you create a new program or LOAD an existing program, the changes you make
to numbered statements at the command line apply to the current program in memory.

ProvideX programs can be edited using a variety of techniques, including command
line editor, *E character-based editor, *it graphical editor, the ProvideX Plug-in for
Eclipse, as well as any other text editor that saves source code in ASCII format.

Numberless Programs
Line Numbers are considered optional in ProvideX. However, numberless programs
can only be created using the ProvideX GUI-based Program Editor (*IT) or some
other text editing tool (because non-numbered statements would be executed immediately at
the command line). Once created, a numberless program may be loaded and listed (and
edited) in Command mode. When issuing a LIST of a numberless program, sequential
line numbers will be inserted automatically (for reference/editing purposes).

Topics

Note: The current program does not have to be saved to be RUN. Conversely, saved
program files can be run directly without first being loaded; although, the RUN will
automatically load the specified program if not already loaded.

3. Development Tools Writing and Modifying Program Code

ProvideX User’s Guide V8.30 Back 48

Command Line Editing
EditorCommand Line Editor

The simplest way to create/change a program involves entering numbered
statements directly at the prompt -> in Command mode. As each numbered
statement is entered, it is evaluated for syntax, compiled, and then placed in
memory to represent a line in the current program. While rudimentary, the
command line editor has all the tools necessary for creating, editing, and saving any
size of program.

During this process, the prompt changes from -> to –: to indicate that the current
program is being edited and has not been saved. The first numbered statement adds
the first line to a new current program, the second, adds another line, and so on.
Regardless of the sequence entered, the lines in the current program are rearranged
internally based on their line numbers, and are always executed in ascending order.
This is true whether you create a new program in memory or LOAD an existing
program from disk.

The basic functionality for using the keyboard or mouse is described under ProvideX
Session, p.11. Other command line facilities are described below.

Using the LIST Directive
At any point during the editing process, you can review the entered statements in
their proper numeric sequence by issuing a LIST of the current program. This gives
you a listing of the entire contents of a program.

LIST

Because a program is maintained internally in compiled (object) format, the LIST
version of some statements may not always match the original entries, but the actual
logic will appear as intended. In the following example, subtle changes are made to
line 40 after it is listed:

->40 z=1,y=6; goto 10
-:list
0010 LET A=4,B=3
0020 LET C=A+B
0030 PRINT C
0040 LET Z=1,Y=6; GOTO 0010

Once listed, the keyword LET is inserted, the lowercase variable names are converted
to uppercase, and the line number is expanded to four digits.

The EDIT keyword can be used with the LIST directive to format the display by
indenting loops and compound statements (see example below).

3. Development Tools Writing and Modifying Program Code

ProvideX User’s Guide V8.30 Back 49

The behaviour of the LIST directive can be affected by various system parameters.
When turned on, 'LC' lists variables in lowercase, 'MC' lists variables using mixed
case (dependent on how they were initially entered), and 'LE' causes LIST to display
the same as LIST EDIT.

Statement Errors
If an error occurs during compilation, the flawed statement will be indicated by a ?
question mark between the line number and the text; e.g.,

->10 A="Hello"
#26 -- Variable type invalid
->LIST

0010?A="Hello"

Modifying Existing Lines
When a numbered statement is entered with the same line number as a line in the
current program, the existing line is automatically overwritten by the new statement.
If you wish to modify rather than overwrite the statement, use the EDIT directive (or
` shortcut) to recall the specific line number; e.g.,

-:list
0010 PRECISION 2
0020 ROUND OFF
0030 LET A=3*(2/3)
0040 PRINT A
-:edit 30
-:0030 LET A=3*(2/3)

3. Development Tools Writing and Modifying Program Code

ProvideX User’s Guide V8.30 Back 50

Once displayed, the contents of the line (including the line number) can be changed
and reentered. Refer to the EDIT directive in the Language Reference, p.107.

Program code can also be copied, pasted, and edited using a variety of other
techniques that include command line recall (up/down cursor keys), as well as the
Edit function, which is accessed via the drop-down menu in the ProvideX
(Windows) console.

To append text to an existing statement, enter the line number followed by a colon; e.g.,

If an existing statement is
0030 PRINT "End-of-pass"

then
->30:;NEXT I

results in
0030 PRINT "End-of-pass"; NEXT I

Deleting Existing Lines
To remove lines from a program, simply enter the desired line number followed by
no directive (e.g., entering a 20 deletes all of line 0020). Optionally, a range of lines
can be deleted using the DELETE directive; e.g.,

DELETE 260,890 ! Deletes statements from line 0260 to line 0890
DELETE 260, ! Deletes statements from line 0260 to program end
DELETE ,890 ! Deletes from program start to line number 0890

Autonumber Sequences
In Command mode, statements must have line numbers to be accepted in the current
program, otherwise they are executed as commands. If you prefer to add numbered
statements without having to type the actual numbers, use the AUTO directive to
generate the line numbers automatically; e.g.,

->AUTO 100,10
0100 ! ProvideX generates lineno 0100 for you. Add the statement.
0110 ! ProvideX adds 10, generates line 0110.
0120

AUTO mode remains active until you enter a null line. You can also backspace over
to change the generated line number.

Renumbering
Use the RENUMBER directive to change line numbers in an existing program
without affecting the logic. All references to the original line numbers will be
adjusted as required; i.e., GOTO and GOSUB statements will point to the new line
numbers. The starting line number, increment, and the range of lines affected can
be defined using this directive.

RENUMBER

3. Development Tools Writing and Modifying Program Code

ProvideX User’s Guide V8.30 Back 51

Search and Replace
Command mode includes a built-in utility that allows the programmer to search the
current program for a specific character string, display it and optionally replace it.
The symbols used to implement this functionality are listed in the section Primary
Syntax Elements , p.32. Subject character strings are delimited by square brackets:

Saving, Loading, Running
Use the SAVE directive to copy the current program in memory to a specified file
name on disk; e.g.,

SAVE "Myprogram"

As mentioned earlier, programs that are saved to disk, may be recalled using the
LOAD directive. This clears the current program (if any) and replaces it with the
program specified; e.g.,

LOAD "Myprogram"

The RUN directive is used to execute the current program. If RUN includes a program
name, the system will automatically load the specified program from disk before
executing it; e.g.,

RUN "Myprogram"

The above information is covered in more detail in the section Directives,
Statements, and Programs , p.22.

Full-Screen Editors
Full-Screen Edit or s

The command line editor is by no means the only way to create/revise a program in
ProvideX. The base system comes with two full-screen editors for program
development and maintenance.

Character-Based Program Editor (*E)
The *E utility provides a character-based editor for editing the current program on
the screen. One of the primary advantages of using this editor is that it runs in all
ProvideX environments – text or graphical.

[PRINT] Displays the next line that contains the word PRINT.

10,100[PRINT] Displays all lines between 10 and 100 containing PRINT.

*[PRINT] Displays all lines containing PRINT.

*[PRT$]=[PRINT$] Changes all instances of PRT$ to PRINT$. The replacement can
also apply to a range of lines (e.g., 10,100[PRT$]=[PRINT$])
or be limited to the next line only ([PRT$]=[PRINT$]).

3. Development Tools Writing and Modifying Program Code

ProvideX User’s Guide V8.30 Back 52

To invoke the utility, select Edit from the main utilities menu or enter CALL "*E"
at the ProvideX prompt ->. If a program is currently running when the editor is
invoked, it will display a termination message; otherwise, the editor displays the
current program on the screen. The top of the screen contains the editor menu:

F1-Text edit F2-Line edit F3-Program F4-Quit

The cursor keys (or mouse) can be used to position the cursor anywhere in the
displayed program. Program compile errors are displayed on the screen below the
lines on which they occur.

GUI-based Program Editor (*IT)
The GUI-based editor requires either Windows or the use of one of the ProvideX
graphical thin clients. This utility is specifically designed for writing and modifying
ProvideX code. It can maintain programs with/without line numbers and allows the
source to be loaded/saved either as ASCII text or as program files.

There are multiple ways to invoke the Program Editor:

• Click the Edit menu item in the graphical System Utilities interface.

• CALL "*it" from the command line.

• Enter it (*CMD shortcut).

• Click the editor tool button next to logic entries in NOMADS.

The Program Editor is completely menu-driven but can also be manipulated using
various quick-key combinations. The interface appears as follows:

3. Development Tools Writing and Modifying Program Code

ProvideX User’s Guide V8.30 Back 53

It also includes a number of added features that are not available (directly) to the
other editing tools, including:

• Formatted text with color highlighting

• Automatic syntax checking

• Line number removal and insertion facilities

• Auto renumber and bracketing

• Built-in print facility

• Direct access to other ProvideX utilities such as NOMADS and panel execution.

A single user may have the same file opened multiple times in one edit session. The
Program Editor keeps track of the last version saved, and displays a warning
message if a previous version is being saved over the latest version. If a user
attempts to open a file currently being edited by another user, a warning message is
presented. If the second user continues and opens the file, neither user can save the
file until one relinquishes control by closing the file.

3. Development Tools ProvideX Plug-in for Eclipse

ProvideX User’s Guide V8.30 Back 54

ProvideX Plug-in for Eclipse
In addition to the tools included in the base system, a ProvideX plug-in has been
developed for use within the Eclipse development platform.

Tutorials, documentation, and installation instructions are available via the ProvideX
Plug-in for Eclipse product page: www.pvx.com/downloads/eclipse.plugin.

About the Eclipse Platform

Eclipse is an open platform for integrating development tools that has wide support
among many of the world's leading technology companies and organizations. It is
designed to be easily and infinitely extensible by adding products/tools to the Eclipse
SDK (software development kit) in the form of plug-ins (usually developed separately
by third parties).

Plug-ins are the individual software components that make up the Eclipse platform.
In fact all Eclipse functionality exists in the form of a plug-in (except for the kernel).
Each is a self-contained bundle in the sense that it contains the code and all resources
that it needs to run. For more information on the Eclipse platform, refer to Eclipse
Foundation website:

http://wiki.eclipse.org/index.php/The_Official_Eclipse_FAQs

3. Development Tools ProvideX Plug-in for Eclipse

ProvideX User’s Guide V8.30 Back 55

 About the ProvideX Plug-in

This ProvideX plug-in is designed specifically for the development of ProvideX
applications within the Eclipse framework and is available for use with ProvideX
activations (as of Version 7) at no additional charge. It adds a ProvideX project,
nature, and perspective to the Eclipse Workbench as well as a number of views,
editors, wizards, builders, and other useful tools.

Pre-requisites for using the plug-in are as follows:

• Minimum of ProvideX v7 activation.
• On MS-Windows a 2 user license (or a demo) is currently required.
• Java SE 5 (1.5.x) run-time environment.
• Eclipse Version 3.2 or higher (MS Vista requires Eclipse Version 3.2.2 or higher).

Feature Summary
Following are some of the key features included with the ProvideX plug-in:

PvxDocs. Automatic generation of documentation for ProvideX Class definition
from tags that are embedded in the source code.

XMI Converter. Conversion of UML models saved in XMI format to one or more
ProvideX Class files.

XML / ProvideX Keyed Files Converter. Conversion of ProvideX keyed files into
XML and vice versa.

NOMADS Integration. All actions that are available from the stand-alone NOMADS
front-end are accessible from within the plug-in.

Data Dictionary Viewer. Displays tables, records, columns and keys for a ProvideX
Embedded Data Dictionary, p.117.

Message Library Viewer. Displays message codes and their texts from the selected
message library.

Super Search Utility. Simple interface for defining complex searches to be performed
against the source code for an application.

Style Checker. Mechanism for verifying that the source code for an application
follows the style rules established by the developer, and for reporting any
discrepancies that are found.

Note: Complete documentation is provided in the ProvideX Development User Guide
(under Eclipse SDK > Help) included with the ProvideX Plug-in installation. Visit the
ProvideX Plug-in for Eclipse product page: www.pvx.com/downloads/eclipse.plugin

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 56

Error Handling and Debugging
Finding errors in code is often the most cumbersome and time-consuming task in
programming. ProvideX features several utilities and language elements that will
help you locate and handle errors during the coding, testing, and debugging stages
of the development cycle.

Error Processing, p.58
Stepping Operations, p.62
Windows Debugging Environment, p.62
Structured SAVE, p.65
Additional Debugging Procedures/Facilities, p.66

Error Codes and Messages

As noted previously, the interpretive nature of the development environment
ensures that statements are automatically checked for correct syntax before they are
tokenized. This is true whether you are entering a command at the ProvideX
prompt, or program code using a full-screen editor.

When an erroneous statement is entered, an error message is displayed immediately:

->print hello world
Error #20: Syntax error ...world
->print "hello world"
hello world

The resulting Error #20: indicates a syntax error. Refer to the complete list of errors
provided under Error Codes and Messages in the Language Reference, p.824.

Execution Errors
During program execution, ProvideX may detect various errors due to problems with
program logic, invalid data, or status conditions (end-of-file, duplicate record, etc.).

All errors detected by ProvideX have a numeric code associated with them. The
value of this code represents the type of error. Error codes ranging from 0 to 255
represent ProvideX-specific messages. Error codes starting from 256 are operating
system (OS) errors. When ProvideX detects an error during program execution:

1. The system variable ERR is set to the appropriate error code.

2. The program is halted.

3. ProvideX returns to Command mode (unless the 'XT' parameter is set, in which
case ProvideX is also terminated).

Topics

Note: For trouble-shooting procedures involving the installation, startup, and
configuration of ProvideX, refer to the Installation and Configuration guide.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 57

4. The statement that generated the error is displayed.

5. The error code and its associated message text is displayed.

Refer to the complete list of errors provided under Error Codes and Messages in
the Language Reference, p.824.

Displaying Error Messages
As mentioned earlier, the ERR variable contains the error code for the last
system-detected error. Use the MSG() function to display a description of the error
code; e.g.,

->PRINT MSG(11)
Error #11: Record not found or Duplicate key on write
->PRINT MSG(275)
No more files
->OPEN(1)"COM10"
Error #12: File does not exist (or already exists)
->PRINT MSG(-1)
IE_BADID Invalid/unsupported device I.D.

Descriptive messages can also be returned for OS errors, provided the information
is available from the OS.

The statement number where the last error occurred is available in the system variable
ERS. This information can also be obtained via the TCB() function: TCB(5) or
TCB(30). The system parameter 'ES', if enabled, will display any OS error message
returned along with the normal ProvideX error from a command prompt; e.g.,

SET_PARAM 'ES'
OPEN (1)"[ODB]Access;FooFoo"
 Error #15: Operating system command failed
 IM002: [Microsoft][ODBC Driver Manager] Data source name not found
 and no default driver specified

Extended Error Information
The ERR() function provides additional information for diagnosing the most recent
untrapped error. This information is not affected by errors that are programmatically
trapped using the procedures described under Error Processing, p.58.

The syntax for this feature, ERR(keyword$), denotes a keyword$ representing the
specific return value. Use ERR("*") to display a list of supported keywords. For
complete details, refer to the Language Reference, p.425.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 58

Error Processing

A program should be designed to handle most of the errors anticipated during
normal program operation. This helps avoid an unwelcome drop to Command mode
(and/or cryptic messages displayed to the end-user). The procedure for detecting
and processing errors without dropping to the system is commonly referred to as
error trapping (or error handling).

There are three methods for dealing gracefully with program errors. The order of
precedence for handling errors in ProvideX is defined as follows:

1. Error Transfer Option – ERR= syntax within directive or function.
2. Error Handling Subroutine – SETERR directive.
3. Error Handling Program – ERROR_HANDLER directive.

Error Transfer Option – ERR=
Most ProvideX directives and functions allow an error transfer option to be included
within their syntax. This option is denoted by the ERR=stmtref clause, where
stmtref specifies a line number or label to which to transfer control. When a
statement that includes an ERR= option generates an error, the branch to stmtref
will be executed; e.g.,
0010 OPEN (2,ERR=0100) "CONFIG"
0020 READ (2,ERR=0050) R$
0030 PRINT R$
0040 GOTO 0020
0050 CLOSE (2)
0060 STOP
0100 PRINT "Unable to open file"
0110 END

If, in the preceding example, an error occurs on the OPEN directive, control will
transfer to statement 0100. If an error occurs on the READ (most likely an
end-of-file), control will transfer to statement 0050. For more information on ERR=
and other control options, refer to the Language Reference, p.807.

Error Handling Subroutine – SETERR
Use the SETERR directive to define a subroutine for handling errors in your program that
are not covered by the ERR= option. While SETERR is in effect, all errors will cause an
immediate transfer of control to the line number or label specified; e.g.,

SETERR0010 SETERR YIKES
0020 OPEN (2) "config"
0030 LOOP: READ (2) R$
0040 PRINT R$
0050 GOTO LOOP
0100 YIKES: !!! Error handler !!!
0110 IF ERR=2 THEN CLOSE (2); STOP
0120 PRINT "error ",ERR," while printing config"
0130 END

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 59

In the preceding example, statement 0010 defines the general error handling
procedure starting at YIKES (statement 0100). After the execution of the SETERR, any
error will cause control to transfer to statement 0100. Statement 0110 tests the system
variable ERR for an END-OF-FILE status which is returned by the READ directive on
statement 0030. Any other error would cause the generation of an error message.

The execution of a SETERR specifying a statement number of 0000 will disable the
general error procedure. In addition, the execution of a BEGIN, CLEAR, END, STOP, or
any directive that causes a program to be loaded will reset the SETERR location.

Retrying an Error
Sometimes it is necessary to re-execute the directive that caused the error after some
corrective action has been taken. A typical example of this would be to repeat an I/O
request on a record or file that is currently busy.

RETRY

Whenever an error occurs and an ERR= or SETERR transfer occurs, the location of the
directive that caused the error is saved. To return to the saved location, the error
handling procedure can execute a RETRY. The RETRY directive transfers control back
to the statement that initiated the error procedure; e.g.,

0010 OPEN (2,ERR=0100) "config"
0020 READ (2,ERR=0050) R$
0030 PRINT R$
0040 GOTO 0020
0050 CLOSE (2)
0060 STOP
0100 REM See if file busy (ERR=0)
0110 IF ERR=0 THEN PRINT "One moment please"; WAIT .5; RETRY
0120 PRINT "Unable to open file"
0130 END

In this example, the RETRY directive is used in statement 0110 to return to the OPEN
directive should the error code indicate that the file was busy. The WAIT directive
suspends the execution of the program for half a second before retrying.

There is one exception to the RETRY procedure. When an ERR= option is used on a
statement to transfer control to the same statement (i.e., to cause the statement to
repeat in case of an error), the RETRY location is neither saved nor modified.

RETRY also returns control to directives within a compound statement; however,
should control be returned to a LET directive with multiple assignments, all
assignments will be repeated. For example, if the following statement is retried, the
value of A would be re-evaluated incorrectly since B will have changed:

0010 LET A=B+C, B=2*B, C=B/(D-A)

Note: SETERR can also be used to specify an error-trapping program, which is similar in
functionality to the ERROR_HANDLER directive described later in this section. For syntax
details, see SETERR in the Language Reference, p.312.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 60

Error Handling Program – ERROR_HANDLER
The ERROR_HANDLER directive can be used to assign a generic program for
handling untrapped errors. If an error occurs, and it is not handled via ERR=option
or SETERR subroutine, the system will call an error handling program (with optional
entry point) specified by:

ERROR_HANDLER prog$[;entry$]

By placing all common error-trapping procedures in a single program, the same
logic can be used by multiple applications throughout the ProvideX session. The
called program determines the necessary corrective actions and, once the recovery is
performed, returns to the offending instruction via the EXIT directive. Should the
error handler specify an error code on the EXIT directive, ProvideX will return to
Command mode allowing the program to be corrected. If desired, the error handler
can execute a START directive to abort the session and restart.

To determine the error handler currently in effect, enter ERROR_HANDLER READ var$,
where var$ is the string variable to receive the program name.

ERROR_HANDLER

Avoiding Endless Loops in Error Handling
ProvideX can prevent endless loops that are caused by errors within an error
handling subroutine. Once a SETERR transfer takes place, ProvideX inhibits further
SETERR transfers until a subsequent SETERR is executed or a RETRY directive
re-executes the statement that caused the error.

However, endless loops can occur on certain system errors that result in a call to the
generic error-handling program. For example, if the ERROR_HANDLER is invoked
due to an "out of file handles" system error, ProvideX will attempt to load the error
handling program. At this point, because the "out of file handles" condition is still in
effect, the result would be an endless loop (see Infinite Loops, p.74).

You can avoid this situation by placing the error handler program in cache memory
(via the ADDR directive). Use ADDR prior to executing ERROR_HANDLER, otherwise
an endless loop may occur when the system attempts to report Error #12: File
does not exist (or already exists).

The error handler program should not generate any un-trapped errors. If the error
handler issues a CALL or PERFORM that causes an error outside of itself, the error
handler will be called again, thus creating another possibility for an endless loop.

Note: ProvideX includes a sample error handler program that can be used as a template
for creating application-specific routines; e.g., ERROR_HANDLER "*ERROR".

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 61

As an additional safeguard in the event that an un-trapped out of file handles
condition does occur, ProvideX will first attempt to report the error condition to the
application. If no corrective action is taken by the application then the following
message is displayed, prompting the user to decide how to proceed:

Tracing a Program

ProvideX provides the ability for a programmer to trace the execution of a program
via the SETTRACE directive. Each statement will be listed as it is executed. This trace
output can either be displayed or written to a file.

The trace output will contain a listing of the statement that is being executed. If a
statement repeats itself then only one occurrence of the output will be displayed. If a
compound statement executes GOSUB, FOR, or WHILE directive as other than the
final directive, it will appear twice in the trace, once when the directive is executed
and once when control returns to the statement; e.g.,

->LOAD "PRIME"
->LIST
0010 INPUT "Enter test prime:",prime
0020 FOR I = 2 TO INT(SQR(PRIME))
0030 IF INT(PRIME/I)*I = PRIME THEN EXITTO 0100
0040 NEXT I
0050 PRINT "Yup, its a prime"; STOP
0100 PRINT "Nope, it ain't prime"; STOP
->SETTRACE
->RUN
0010 INPUT "Enter test prime:",prime
Enter test prime:11
0020 FOR I = 2 TO INT(SQR(PRIME))
0030 IF INT(PRIME/I)*I = PRIME THEN EXITTO 0100
0040 NEXT I
0030 IF INT(PRIME/I)*I = PRIME THEN EXITTO 0100
0040 NEXT I
0050 PRINT "Yup, its a prime"; STOP
Yup, its a prime

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 62

The tracing of a program remains active until either an ENDTRACE is executed or the
program terminates.When trace output is sent to a file by specifying SETTRACE (chan)
make sure that the file chosen does not conflict with any files in use by the program.
Make sure the program does not accidentally close the file by executing a BEGIN
directive. See also TraceWindow, p.63.

Stepping Operations
Another common debugging technique involves putting an ESCAPE directive into a
program and then "stepping" through the code in console mode during execution.
This is an extremely useful method for tracing and following complex problems
within program logic. It allows you to check the value of variables at different points
and track program flow.

Use the following shortcut keys followed by to apply a stepping operation.

The key (without) can be used to repeat the last type of stepping operation
performed. (It emulates the . period by default.) The Step menu option in the
CommandWindow works in much the same way (See below).

Windows Debugging Environment
The Windows version of ProvideX includes a debugging environment that can be
accessed via the drop-down menu. It comprises four separate windows that allow
you to display lines of code, set break points, monitor variables and/or expressions, and
work in a stand-alone command console while executing a program for testing.

To access these tools, simply press the key combination - , D then select
one of the following debugging actions: TraceWindow, WatchWindow,
BreakWindow, or CommandWindow.

Keys Stepping Operation

. Executes next line of code and returns to command prompt.

.n Executes n lines of code and returns to command prompt.

.. Steps through stack entries (e.g., FOR..NEXT, GOSUB..RETURN, or
CALL..PERFORM..EXIT) until completion.

... Completes execution of (and then exits) the current program level
(CALL..PERFORM..EXIT) stack.

; Steps through compound statements.

;n Steps through n directives in a compound statement (and then stops).

ENTER

F2 ENTER

Alt SPACEBAR

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 63

Debugging functionality can also be set on-the-fly in ProvideX using the 'OPTION'
mnemonic; e.g., PRINT 'OPTION'("DebugWindow","Trace"). For more
information, refer to the 'OPTION' mnemonic in the Language Reference, p.622.

Disabling the Debugging Environment
The debugging facilities are automatically disabled if a lead program (LPG system
variable) is specified in the command for launching ProvideX. This can be
overridden by adding the line DEBUG=1 to the [Config] section of the INI file.
(The name of the INI file can be obtained via the ARG(-1) function.) The debugging
environment can be disabled by setting the DEBUG option to a value of -1 (negative
one) in the INI file. These options are fully explained under INI Files (Windows) in
the Installation and Configuration guide.

TraceWindow
TraceWindow is used to trace the execution of an application. It displays (up to) the
last 4096 lines executed, which can be saved to a file for subsequent analysis. The
menu items for this window include:

The SETTRACE PRINT directive can be used throughout an application to output
directly to the TraceWindow; however, this directive is ignored if the Suppress
Program Trace option is active.

Options
Always on top Displays TraceWindow always on top of ProvideX.
Font Changes font and font size for text in TraceWindow.
Auto-Start Auto-activates TraceWindow when ProvideX starts.
Log all Errors Logs errors trapped by ERR=, DOM=, SETERR.
Suppress Program Trace Suppress normal program tracing.
Host Trace WindX only - Log All Errors and Trace Programs options

for server-side programs. Trace lines from the host are
prefixed with <h>.

Show Property GET Enables/disables property GET option.
Show Property SET Enables/disables property SET option.
Trace File Opens Enables/disables trace file opens option.
File Open Failures Enables/disables trace file open failures option.
File IO Operation Trace Enables/disables file IO operation trace option.
DebugPlus with Backtrace Enables/debugplus backtrace option.

Edit
Copy Copies TraceWindow contents to the Windows clipboard.
Find Search forward/backwards for search string.
Save to file Save TraceWindow contents to a file.
Clear trace list Clear the contents of the TraceWindow.
Trace List Size Options for setting the size of the trace buffer window:

1K, 2K, 8K, 16K or 32K lines. If the selected trace buffer is
smaller than the data currently in the buffer, then the
trace buffer will be reset.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 64

Under WindX, TraceWindow serves a dual purpose. Normal tracing/error logging
options are relative to the WindX workstation itself. Host tracing capabilities are
controlled by a separate Options item. This allows the application to follow program
execution on the server while tracing remote calls back to the workstation.

WatchWindow
WatchWindow allows you to constantly monitor variables and/or expressions
during program execution. These settings may be copied to the clipboard or saved in
a file for subsequent reload. The menu items for this window include:

BreakWindow
BreakWindow is used to assign logical break points for halting execution in an
application. You can specify the name of the program, line reference, and optional
condition to test. The menu items for this window include:

Options
Always on top Displays WatchWindow always on top of ProvideX.
Font Changes font and font size for text in WatchWindow.
Auto-Load Auto-loads watch values from the last Save to file.
No data break Output without breaks.
50 byte data break Automatic breaking of string data every 50 bytes.
100 byte data break Automatic breaking of string data every 100 bytes.
Host Watch WindX only - Enables/disables server-side watch values.

Edit
Copy Copies WatchWindow settings/contents to the clipboard.
Save to file Save TraceWindow settings/contents to a file.
Load from file Load settings from a previously saved file.
Clear all watches Remove all of the current watch values.
Add new watch Prompts for a variable/expression to add to watch window.
Delete current watch Delete the currently selected watch value from the window.

Options
Always on top Displays BreakWindow always on top of ProvideX.
Font Changes font and font size for text in WatchWindow.
Auto-Start Auto-activates BreakWindow when ProvideX starts.
Host Break Point WindX only - Enables/disables server-side break points.

Edit
Copy Copies BreakWindow contents to the clipboard.
Save to file Save BreakWindow settings to a file.
Load from file Load settings from a previously saved file.
Clear all breaks Remove all of the break points.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 65

CommandWindow
This window can be used to handle all console commands without disrupting your
standard screen display. The menu items for this window include:

The CommandWindow facility is also available under WindX.

Structured SAVE
By setting the 'SS' parameter, you can verify the logical integrity of decision and loop
structures automatically each time you SAVE a modified program. This feature checks
programs in logical forward sequence to see if a start-of-structure block finishes in order
with the correct matching end-of-structure directive. This also validates that there are no
CASE or DEFAULT directives outside of a SWITCH/END SWITCH structure. The
following sets of directives are checked for structural integrity:

FOR..NEXT WHILE..WEND REPEAT..UNTIL IF..THEN..ELSE

SWITCH..CASE SELECT..FROM..NEXT RECORD

If a logical error occurs (e.g., a FOR with no corresponding NEXT) the process will result
in a Warning #125: Improper Structure Detected that indicates the line
where the fault was detected; e.g.,

0010 BEGIN
0020 FOR I = 1 to 40
0030
0040 WEND

The resulting report would indicate the start of the structure block at line 20 and
mark the detection point at line 40, since it should have encountered a NEXT as
opposed to a WEND.

For more information on logical structures, see Chapter 4. Programming Constructs.

Add new break Establish a new break point with the following parameters:
Program name to add a break point to.
Statement (number or label) for the break point.
Break when on variable name or Boolean expression.
Changes condition regarding variable specified.
Is true condition regarding Boolean expression specified.

Delete current break Delete the currently selected break point from the window.

Options
Always on top Displays CommandWindow always on top of ProvideX.
Font Changes font and font size for text in CommandWindow.
Auto-Start Auto-activates CommandWindow when ProvideX starts.

Run or Halt Start or suspend execution of the current program.
Step Single step through the current program.

Note: There will be no attempt to decipher the logic to determine if a GOTO might
make the logic work.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 66

Additional Debugging Procedures/Facilities

While Error Codes and Messages and the Windows Debugging Environment
provide the most obvious means for finding errors in syntax and logic, a few other
facilities can be employed to handle or prevent programming problems.

Current State Information (Windows)
For a quick look at the current state of the ProvideX version installed on your
system, select the About ProvideX option from under the PVX icon , then click
the Info button.

The information displayed in this window includes the version number and build
date, current date, program backtrace, list of all open files, and a list of all active
OOP objects. Update contents by clicking the Refresh button. This feature is only
available with ProvideX for Windows.

ProvideX Log File
The ProvideX log file can be used to provide a more detailed breakdown of internal
errors that are encountered by ProvideX on MS Windows and UNIX/Linux platforms.

Note: For debugging procedures involving the installation, startup, and configuration
of ProvideX, see Trouble-Shooting in the Installation and Configuration guide.

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 67

In Windows, the log file is activated by adding a LogFile=filename entry to the
ProvideX INI file under the [Config] section. For more information, see INI Files
(Windows) in the Installation and Configuration.

The log file feature in the UNIX environment is enabled by the existence of a file
called pvxtrace.log. If the file exists when ProvideX attempts to add the first
entry, then entries are appended to this file. If it does not exist, then the logging
feature is disabled for the balance of the ProvideX session. The name of the log file
on a UNIX machine is not configurable currently.

All entries in the log file are displayed using the following format:

mmm dd hh:mm [progname:stmt#]errormsg

Where:

Example:

Sep 15 16:52 [*ntslave:0320] [TCP][Winsock]Error status:10049 (-1)

Entries in the log for TCP/IP issues include a descriptive message followed by the
actual TCP/IP error code and the socket number that was being used. A socket value
of –1 usually indicates the OPEN was not successful.

Logical Line Labels
While logical line labels don't qualify as debugging options, they can reduce
potential difficulties caused by renumbering programs and can simplify the
development of programs without line numbers. These are described in the
Language Reference, p.812.

Generic Escape Key Handling
Using the following syntax, an application can intercept keys system wide:

SETESC prog_name$

The SETESC directive takes precedence over the generic escape key handler.

For ODBC-Related Problems
'!Q='

The '!Q'= system parameter can be used to will show all of the SQL commands
being executed in a Windows message box. The OK/Cancel option allows a
programmer to disable the message boxes by selecting Cancel.

mmm dd hh:mm Date and time of the entry.
progname:stmt# Name of the program and statement executing when the

entry was added.
errormsg Actual descriptive message.

Esc

3. Development Tools Error Handling and Debugging

ProvideX User’s Guide V8.30 Back 68

ProvideX User’s Guide V8.30 Back 69

User’s Guide 4
 Programming Constructs

The discussion now turns to basic programming constructs using the building blocks
covered in Chapter 2. Language Elements.

General Concepts, p.69
Flow Control, p.72
Called Procedures, p.81
Basic Input/Output, p.87

For more information on the syntax elements discussed in this section, see Chapter
2. Directives in the Language Reference.

General Concepts
While ProvideX is an extensible language that has the flexibility to incorporate new
functionality and sophisticated coding techniques, the more advanced capabilities
are built upon universal concepts. Therefore, learning ProvideX begins with some
programming fundamentals, as outlined below.

Order of Execution
As described in Chapter 2, directives can be executed individually from the
command line or they can be entered as numbered statements to be saved in
memory before execution (see Directives, Statements, and Programs, p.20).

Program statements are grouped into the constructs for receiving and manipulating
data, doing calculations, and printing output. During execution, the statements are
evaluated and processed in the order they are read by the system. Logic flows
through all the statements in one pass, from left to right and top to bottom, until the
last statement is processed - this direction remains fixed unless specific commands
are used to change this sequence.

Topics

Note: The facilities in ProvideX for writing and modifying program code are
discussed in Chapter 3. Development Tools.

4. Programming Constructs General Concepts

ProvideX User’s Guide V8.30 Back 70

Changing the Sequence

ProvideX employs various Flow Control mechanisms in order to perform
conditional or repetitive instructions or to improve structure and maintainability of a
program. Statements may be subject to certain conditions (decisions), executed
repeatedly (loops), or packaged into code modules (subroutines/subprograms) that
can be accessed from different points in the main program (see Modular
Programming Facilities, below).

Stack
Like most programming languages, ProvideX maintains a type of data buffer called
a "stack", which is used to store dynamic information associated with active
counters, loops, and subroutines during execution of a program. For example, the
primary purpose of a subroutine stack is to keep track of the location in the program
(address) to which each procedure will return control when it is completed. At the
start of every subroutine, a new return address will be placed on the top of the stack.
When the procedure finishes, it pops the return address off the stack and transfers
control to that address.

This type of information is continuously stacking up and unstacking the buffer as
the program requires. An operational error that causes a stack to exceed its buffer
allocation is called a stack overflow.

Input/Output Operations

Input/Output (I/O) in ProvideX programming refers to activities where source data
is accepted into a program for processing, or where resultant data is sent from a
program for storage or display. Depending on the process, I/O may take place to or
from a device or file, with or without user interaction. Interfaces can include the
keyboard, mouse, monitor, printer, and a variety of other connected devices. This
chapter introduces Basic Input/Output operations (at the ProvideX console). More
advanced topics are covered in Chapter 6. Graphical User Interfaces.

Data can take different forms: defined as Numeric Values or String Values,
presented as Literals, or stored in Variables. Once a session is terminated, the
processed data also disappears. However, if a more permanent storage solution is
required, the data can be saved to a data file. For an in-depth look at the ProvideX
file system and file I/O operations, refer to Chapter 5. File Handling.

During execution, files as well as devices are opened for access via the OPEN
directive. See Opening/Closing Devices and Files, p.87.

Modular Programming Facilities

As an application becomes larger and more complex it becomes increasingly difficult
to keep track of where certain procedures are to be executed. ProvideX allows you to
organize and extend the built-in capabilities of the language using modular

4. Programming Constructs General Concepts

ProvideX User’s Guide V8.30 Back 71

programming facilities, referred to as Called Procedures. Commonly-used
expressions or calculations can be packaged into user-defined functions for reference
by name elsewhere in the program. A similar approach includes transferring
execution to subroutines (inside) or separately-written subprograms (outside) from
points in the main program.

Advanced Concepts

The ProvideX language supports programming techniques where the coded lines are
not necessarily written and executed as a fixed series of statements. This flexibility
enables the use of different constructs that are better-suited for incorporating new
user functionality and advanced programming paradigms; i.e., Event-Driven
Methodology, Graphical User Interfaces, and Object-Oriented ProvideX.

Event-Driven Programming
Traditionally, programs operated in a sequential fashion: they received some data,
did some processing, produced output, received more data, and so on. In
event-driven programming, processing is invoked only in response to specific inputs
or events. Each call to a single subroutine or function is a sequential process, but the
application as a whole does nothing until it is triggered by an event.

Graphical user interfaces are event driven by nature. GUI-based programs must run
continuous event loops to check for, capture, and process the different sources of
user input; e.g., dragging a mouse, clicking a button, pulling down a menu.

Refer to the Chapter 6. Graphical User Interfaces for more on this subject.

Object-Oriented Programming
While the functionality of a GUI-based application appears simple and natural to the
user, the algorithms behind this type of interface design can be extremely complex.
One of the more efficient ways in which graphical, event-handling operations can be
expressed in ProvideX is via object oriented programming (OOP)

The idea of object orientation is to keep data and processing methods together as a
single indivisible thing—an object. For example, each element of a GUI can be
represented by one object. The GUI object determines both the state and the behavior
of the corresponding elements. For example, an object representing a window would
have data for its position, size and title. If the user closes the window, a message is
sent to the window object telling it to close itself. The window then executes a
process that erases its image from the desktop.

See Chapter 11. Object-Oriented ProvideX for complete documentation on the
OOP mechanisms used in ProvideX.

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 72

Flow Control
Several mechanisms can be used to control program flow to perform conditional or
repetitive instructions or to improve structure and maintainability. Statement
References are sometimes an essential component for these types of procedures. As
mentioned earlier, the ProvideX Structured SAVE feature can be used to verify the
logical integrity of decision and loop structures automatically each time you save a
modified program.

This section covers sequence control statements for repetitive execution, conditional
execution, and sequence overrides.

Statement References
By definition, a sequence control procedure will generally redirect program flow to
some place that is outside the current order of execution. These transfers (branches
or jumps) are most often invoked via statement references – pointers to other
locations in the program that are identified by Line Numbers, Line Labels, or
Logical Statement References.

Line Numbers
line number

At one time, line numbers were among the most distinctive features of BASIC
programming. In early dialects, they were mandatory for identifying lines of code,
and as reference points for any type of sequence control procedure. They still work
in ProvideX, but are generally associated with less structured programming
techniques. See also Numberless Programs, p.47.

Currently, with prevalent use of line labels in contemporary programming, line
numbers are now considered superfluous. While many developers keep them in
their applications, line numbers are really only necessary when working with the
Command Line Editing in ProvideX (for listing and editing).

In unstructured line-numbered programs, transfers are normally accomplished via
the GOTO directive. This provides a direct unconditional jump. For example, when
the system encounters a GOTO 0021, control automatically transfers to the statement
at line 21.

Topics Loop Structures: FOR..NEXT WHILE..WEND REPEAT..UNTIL

SELECT..FROM..NEXT RECORD (WHERE condition)

Decision Structures: IF..THEN..ELSE SWITCH..CASE ON..GOSUB / ON..GOTO

Flow Overrides: EXITTO CONTINUE BREAK POP

Note: Many of the code samples in this documentation use line numbers for
illustration purposes. These are optional, unless they appear in a statement reference.

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 73

GOTOHowever, if line 21 does not exist, control moves down to the statement with the
next higher line number; e.g.,

-:0010 LET X=10
-:0020 IF X=10 THEN GOTO 0021
-:0025 PRINT "Where is line 21?"
-:run
Where is line 21?

While the use of GOTO statements does not mean that a program is unstructured,
they are most often used to facilitate unstructured flow control. Generally, you
should avoid unstructured programming wherever possible.

Line Labels
Like line numbers, line labels are used to identify a single line of code. Labels can
include any combination of characters (plus the _ underscore character) but must begin
with a letter and end with a : colon. The colon is not used when referencing a line label.
A label name can be up to 127 characters in length.

For example, when the statement GOTO Total is processed, the program automatically
jumps to the line with the label Total: at the beginning of the statement:

CHECK_TOTAL: IF A$=B$ THEN GOTO TOTAL

The line label can also appear on a line by itself:

TOTAL:
! Continue processing

While a line label can be referenced multiple times, the label itself can only occur
once in a program. When used in large programs, line labels offer improved
readability and are considered much easier to maintain. As mentioned earlier,
references to line labels make line numbers unnecessary.

While line label references are optional in line-numbered programs, they are
mandatory in programs where line numbers are omitted (and in this case, references
to line numbers would be invalid).

Logical Statement References
ProvideX includes a set of built-in logical statement references that can be applied as
keywords (with leading asterisk *) anywhere actual statement references are used; i.e.,
*BREAK, *CONTINUE, *END, *ESCAPE, *NEXT, *PROCEED, *RETRY, *RETURN, *SAME.

Unlike number or label references, logical references do not point to a specific
location, but provide a generic or dynamic transfer of execution; i.e., advancing to the
next line, or returning from a subroutine. These references are particularly useful in
line-numbered programs because they help to reduce errors caused by renumbering
issues and can clarify the intent of a statement.

Example:

READ(1,KEY=CUST_NUM$,DOM=*NEXT)

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 74

Where the logical statement reference *NEXT automatically transfers execution to the
beginning of the next line/statement. For more information, see Labels/Logical
Statement References, Language Reference p.812.

Loop Structures

Loop structures are intended for repetitive execution. They comprise a set of
statements that are specified once, but can execute multiple times based on defined
counters or condition statements. ProvideX includes the following directives for
building controlled loops:

A similar structure is used to open, query, and read records from a data file. For
more information on this type of loop, refer to the SELECT..FROM..NEXT RECORD
statement described in Chapter 5. File Handling.

ProvideX also includes some directives that allow early termination of a currently
active loop. See Flow Overrides, p.79.

Infinite Loops
Sometimes a loop is constructed so that it executes endlessly. The term infinite loop
most often applies to a situation where this result is not intended and is likely due to a
logic or system error. Carefully review your code to ensure that your loops are
designed to halt normally. For information on dealing with unexpected results
during program operation, see Error Handling and Debugging , p.60.

FOR..NEXT
The FOR directive is used to define the start of a counter-controlled loop. There are two
types of FOR..NEXT loops: a conventional format and a simplified iteration format.

Conventional Format. This FOR..NEXT syntax specifies a control variable (var), an
initial value (first), an ending value (last), as well as an optional STEP value that can
be used to set the increment/decrement to a specific value (default is 1); e.g.,

FOR var=first TO last [STEP val] ..NEXT [var]

The NEXT directive marks the end of the loop. The control variable used with the
NEXT directive must match the variable in the corresponding FOR directive. The
NEXT control variable is optional, but should be used to maintain readability
(especially for nested loops).

All statements following the FOR directive are executed in sequence until a NEXT
directive is encountered. At this point, the control variable is incremented or
decremented automatically. If the contents of the control variable exceeds the ending

FOR..NEXT uses a counter to control the number of repetitions made.

WHILE..WEND tests a condition at the beginning the loop before starting.

REPEAT..UNTIL tests a condition at the end of the loop before repeating.

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 75

value (or falls below it, if decremented), control is transferred out of the FOR..NEXT
loop, and execution resumes at the statement following the NEXT directive.
Otherwise, control stays in the loop and is transferred back to the statement
following the FOR directive.

Example:
0010 FOR I=1 TO 10
0020 PRINT I,
0030 NEXT I
-:RUN

1 2 3 4 5 6 7 8 9 10

Simplified Iteration Format. The following FOR..NEXT syntax is used to specify the
number of iterations in the loop:

FOR var ..NEXT [var]

The simplified format executes the logic immediately following the FOR by the
number of times specified in the numeric value var; therefore, FOR 1 will execute
the loop once, and FOR 5 will execute the loop 5 times. A value of zero causes the
loop to be skipped. An error is generated if the numeric value is not an integer or it
is less than zero.

If var is a simple numeric variable, the system will first set var to 1, then increment
up to its initial value. When var is 5, the loop will execute 5 times, with var starting at
1 and incrementing by 1 through each iteration to 5. At the completion of the loop,
var will equal its initial value.

Example:
0010 LET X$="THIS IS A TEST"
0020 LET N=LEN(X$)
0030 FOR N
0040 IF X$(N,1)=" " THEN LET X$(N,1)="_"
0050 NEXT
0060 PRINT X$
-:RUN
THIS_IS_A_TEST

If the loop is exited prematurely (via BREAK, POP, or EXITTO), the counter variable var
will retain the value of the current iteration. Regardless of whether a simple numeric
variable is used, TCB(19) will contain the current iteration count during the loop.

For syntax details, see FOR..NEXT in the Language Reference, p.133.

Note: The conventional FOR..NEXT format does not test the condition until the NEXT
statement is executed; therefore, the loop is always executed at least once, even if the
control variable is initialized to a value exceeding the ending value.

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 76

WHILE..WEND
Use the WHILE directive to specify a condition (numeric expression) at the beginning
of a condition-controlled loop; e.g.,

WHILE expression ..WEND

ProvideX executes all statements between WHILE and WEND repeatedly, until the
expression returns a false (0 zero) result; e.g.,

Example:

0010 INPUT "CAN WE TALK? <Y/N> ",R$
0020 WHILE UCS(R$)<>"N"
0030 INPUT "NAME PLEASE: ",N$
0040 INPUT "WHAT IS YOUR AGE "+N$+"? ",A$
0050 INPUT "CONTINUE? <Y/N> ",R$
0060 WEND

When ProvideX encounters a WHILE directive, it evaluates the expression. If the
result is not 0 zero, ProvideX continues execution until a corresponding WEND
directive is encountered, at which point the expression is re-evaluated. ProvideX
continues to loop back to the directive following the WHILE directive until a 0 value
is reached. At this point, ProvideX advances to the next WEND directive, where it
terminates the loop. Then control transfers to the statement following the WEND.

For syntax details, see WHILE..WEND in the Language Reference, p.371.

REPEAT..UNTIL
The REPEAT directive is used to begin a condition-controlled loop. In this structure, the
UNTIL directive specifies the condition at the end of the loop; e.g.,

REPEAT ..UNTIL expression

ProvideX executes all statements between REPEAT and UNTIL repeatedly, until the
expression returns a true (non-zero) result; e.g.,

Example:

0010 LET X=1
0020 LET C=1
0030 REPEAT
0040 LET X=X*2
0050 LET C=C+1
0060 UNTIL X>100000
0070 PRINT C,X
-:run
 18 131072

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 77

After the REPEAT directive, ProvideX executes all statements until the UNTIL
directive, it then tests the condition specified. If the result is false (0 zero), ProvideX
loops back to the directive following the REPEAT directive and resumes execution. If
the result is true (non-zero), the loop is terminated and execution continues from the
statement following the UNTIL directive.

For syntax details, see REPEAT..UNTIL in the Language Reference, p.283.

Decision Structures

A decision structure is intended for conditional execution. It is designed to change
program flow by selecting a new path from among one or more possible branch
points. ProvideX includes the following directives for building decision structures:

IF..THEN..ELSE
Use an IF..THEN statement to execute a series of statements based on the result of a
Boolean expression that evaluates to true (non-zero). An optional ELSE clause can be
used to specify statements that are to be executed when the Boolean expression
evaluates to false.; e.g.,

IF expression THEN ... [ELSE ...] [END_IF]

All statements within an IF..THEN..ELSE structure exist on the same line and must be
separated by semicolons. However, statements can span multiple lines if they are
enclosed within curly brackets; e.g.,

IF expression THEN {...} [ELSE {...}] [END_IF]

An optional END_IF (or FI) clause may be used as an IF terminator and/or to execute
a common closing statement that is outside the IF condition. This is particularly
useful for separating ELSE clauses within a nested IF..THEN..ELSE structure. Once the
statements that follow an END_IF clause are executed, control falls through to the next
line, or (if nested) to the previous layer of IF..THEN..ELSE.

IF..THEN..ELSE tests a Boolean expression, then determines what action to take
depending on the true or false result.

SWITCH..CASE compares an expression/value against a series of specified
values to determine what action to take.

ON..GOSUB /
ON..GOTO

counts through a sequence of possible statement destinations
based on a supplied value to determine what action to take.

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 78

Examples:

These example IF..THEN..ELSE statements perform similar operations. The one on the
right uses curly brackets to separate statements on different lines. For syntax details,
see IF..THEN..ELSE in the Language Reference, p.156.

As an alternative to a compound IF..THEN..ELSE statement, use SWITCH..CASE, p.78.

SWITCH..CASE
The SWITCH..CASE directive executes different statements depending on where it
finds a match among a series of values. Unlike the IF..THEN..ELSE structure, which
chooses between two possible branch points, this structure chooses from multiple
branch points; e.g.,

SWITCH expression CASE range_1 [...CASE range_n] [BREAK] [DEFAULT] ... END SWITCH

Execution continues with the statements that follow any matching CASE range (until the
next BREAK or END SWITCH). If there are no matches in any of the CASE statements,
control falls through to the DEFAULT clause (if present), and the statements that follow are
executed automatically.

Example:

SWITCH UCS(x$)
 CASE "CAT"
 PRINT "Selected cat"
 BREAK
 CASE "DOG","FOX","PIG"
 PRINT "Selected ",x$
 BREAK
 CASE >"ZEBRA"
 PRINT "Selected something Greater than a Zebra"
 BREAK
 DEFAULT
 PRINT "Default code kicks in"
! This executes when all of the above fails
 END SWITCH

This can be coded similarly using the following IF..THEN..ELSE statement:

00010 IF SW=0 \
 THEN LIGHT$="OFF" \
 ELSE LIGHT$="ON" \
 END_IF;
 PRINT "LIGHT IS ", LIGHT$
-> SW=0
-> RUN
LIGHT IS OFF

00010 IF SW=0 THEN {
00020 LET LIGHT$="OFF"
00030 } ELSE {
00040 LET LIGHT$="ON"
00050 }
00060 PRINT "LIGHT IS ", LIGHT$
-> SW=1
-> RUN
LIGHT IS ON

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 79

IF x$="CAT" \
 THEN PRINT "Selected cat" \
 ELSE IF x$="DOG" OR x$="FOX" OR x$="PIG" \
 THEN PRINT "Selected ",x$ \
 ELSE IF x$>"ZEBRA" \
 THEN PRINT "Selected something Greater than a Zebra" \
 ELSE PRINT "Default code kicks in"
 ! This executes when all of the above fails

For syntax details, see SWITCH..CASE in the Language Reference, p.327.

ON..GOSUB / ON..GOTO
These statements provide a variation of the GOTO and GOSUB directives that allows
transfer of control to a choice of multiple destinations; e.g.,

ON num GOSUB stmtref,stmtref,...
ON num GOTO stmtref,stmtref,...

In this decision structure, the branch point is determined by counting num places
through the sequence of stmtref’s. The sequence is 0 zero based. If num is greater
than the number of stmtref’s supplied, the last stmtref is assumed. If num is 0 or
less, the first stmtref is assumed.

Examples:

1000 ON X GOSUB 2100,2200,2200,2300

If X=0, control transfers to line 2100; if X=1, control transfers to line 2200; and so on.
For syntax details, see ON..GOSUB / ON..GOTO in the Language Reference, p.229.

Flow Overrides

Sometimes it is necessary to exit a running loop (subroutine, procedure) as soon as a
specific task is completed, regardless of the value of the control variable or test
expression. The following directives allow for immediate termination of a loop or
subroutine:

BREAK
The BREAK directive terminates an active loop and transfers control to the statement
immediately after where the loop normally ends; i.e., NEXT or WEND.

Example:
0010 DIM X$[100](1,"*"); LET X$[50]=""
0020 FOR I=1 TO 100
0030 IF X$[I]="" THEN BREAK
0040 NEXT
0050 ESCAPE

If the conditional BREAK is executed, the program skips to line 0050. For syntax
details, refer to the BREAK directive in the Language Reference, p.33.

4. Programming Constructs Flow Control

ProvideX User’s Guide V8.30 Back 80

EXITTO
The EXITTO directive terminates the currently active loop or subroutine and
transfers control to the statement reference indicated.

Example:
0010 DIM X$[100](1,"*"); LET X$[50]=""
0020 FOR I=1 TO 100
0030 IF X$[I]="" THEN EXITTO 50
0040 NEXT
0050 ESCAPE

For syntax details, refer to the EXITTO directive in the Language Reference, p.124.

POP
Use this directive to clear (pop) the top entry from the FOR..NEXT, WHILE..WEND,
REPEAT..UNTIL, GOSUB stack. POP is equivalent to EXITTO except that it does not
transfer control (to a statement reference), but continues with the next statement in
direct execution sequence. For syntax details, refer to the POP directive in the
Language Reference, p.244.

CONTINUE
The CONTINUE directive is similar to the BREAK directive in that it causes the
current iteration of a loop to be terminated, but unlike BREAK, it resumes the loop's
execution with the next natural cycle.

Example:
0010 DIM X$[100](1,"*"); LET X$[50]="",K$="*"
0020 FOR I=1 TO 100
0030 IF X$[I]=K$ THEN CONTINUE
0040 PRINT I
0050 NEXT
0060 ESCAPE

For syntax details, refer to the CONTINUE directive in the Language Reference, p.56.

4. Programming Constructs Called Procedures

ProvideX User’s Guide V8.30 Back 81

Called Procedures
Subroutines, subprograms, and user-defined functions comprise a sequence of
statements that are specified once, but can be accessed many times from various
points in a main program. The directives discussed in this section are used for
building and accessing called procedures in ProvideX.
:

Called procedures are common features in structured programming. They allow a
larger program to be split into smaller logical sections, which makes it easier to
maintain and debug. They can also consolidate general-purpose tasks and
frequently-used calculations, which eliminate repetitious code and help reduce
overall program size. This concept (of reusable blocks of code) is integral to the more
advanced programming techniques on which Object-Oriented ProvideX is based.

Each time a subroutine, subprogram, or user-defined function is called, the system
remembers where the transfer occurs in the main program and resumes execution at
that point when the procedure is completed. However, some subroutines can include
statements that redirect control to a destination other than the original transfer point;
see Flow Overrides, p.79.

Some called procedures share variables with the initiating procedure so that they can
be defined, modified, or cleared at any point during execution. Use the LOCAL
directive to restrict or reassign a variable name within a called procedure. This is
explained in more detail under Variables, p.34.

GOSUB Use the GOSUB directive to transfer control to a subroutine – a sequence of statements
that can be accessed multiple times from anywhere in the main program; e.g.,

GOSUB stmtref

When GOSUB is executed, ProvideX saves the current location on the GOSUB stack
then transfers control to the specified program line number or label (stmtref), which
marks the start of the called subroutine. See Statement References, p.72.

RETURN

The RETURN directive marks the end of a subroutine and transfers control back to
the location saved on the GOSUB stack; e.g.,

00010 FOR X=1 TO 10
00020 PRINT " GOING TO THAT";

Topics GOSUB transfers control to a subroutine, which exists inside the
current program.

CALL and PERFORM transfers control to a subprogram, which exists outside the
current program.

DEF FN creates a user-defined function that can be invoked by
name anywhere in the current program.

Note: While the SETESC and SETERR directives perform similar transfers of control, this
form of called procedure has a single purpose, and is not intended for reuse.

4. Programming Constructs Called Procedures

ProvideX User’s Guide V8.30 Back 82

 GOSUB THAT
00030 NEXT X
00040 PRINT 'LF',"VALUE IN X=",X
00050 END
00060 THAT:
00070 LOCAL X
00080 WHILE X<25
00090 PRINT X,;
 X++
00100 WEND
00110 RETURN

All subroutine content exists between the called statement reference and the RETURN
directive. The subroutine itself can exist anywhere in the program, typically outside
the main order of execution.

Alternatively, the EXITTO directive may be used to terminate the subroutine before it
reaches the RETURN statement – this transfers control to the statement identified by
the EXITTO instead of the location saved on the GOSUB stack. There is no limit to the
number of locations that can be saved on the GOSUB stack.

For syntax details, refer to the GOSUB directive in the Language Reference, p.140.

CALL Use the CALL directive to transfer control to a subprogram – a called procedure that
exists in a completely separate program file; e.g.,

CALL subprog$[;entry$] [,arglist]

When a CALL is executed, ProvideX saves the current location on the stack in the
current program, then loads and executes the subprogram (subprog$). For syntax
details, refer to the CALL directive in the Language Reference, p.40.

Subprograms
The term subprogram denotes a program that is called from another program. There
are no real differences between subprograms and programs, except that, when a
subprogram terminates, processing continues as control is passed back to the
program that initiated it. Subprograms can also initiate further subprograms with
virtually no limit (apart from memory constraints).

The EXIT directive is used to terminate a subprogram; however, a STOP or END
directive may be used in its place.

EXIT

A level number is maintained within ProvideX that records the number of subprograms
currently in progress. When a subprogram is started, the current level is incremented
by one – when the subprogram terminates, the level is decremented by one. The value
of the current level indicates the number of programs currently active. This
information can be accessed via the TCB() function and is displayed by ProvideX at

Note: The same stack is used for GOSUB, FOR..NEXT, WHILE..WEND, and
REPEAT..UNTIL directives; therefore, a RETURN can only be executed after all of these
structures in the subroutine have been terminated.

4. Programming Constructs Called Procedures

ProvideX User’s Guide V8.30 Back 83

the prompt line whenever execution is halted while within a program. The return
address and programs are maintained in the subprogram stack. This information can be
retrieved via the STK() function.

Passing Arguments
Arguments (arglist) are received in a subprogram via the ENTER directive. Each
argument in the CALL statement corresponds by position and in data type (numeric
or string) to an argument in the ENTER statement. A complete numeric array may be
passed to a subprogram by specifying {ALL} following the variable name in both the
CALL and ENTER directives. Changes to any element of the array will affect the
corresponding array in the main program.

ENTER

For example, if a CALL to a subprogram named SUBR defines arguments as follows:

CALL "SUBR",LEN(A$),N,A$,T{ALL}

The subprogram SUBR would require the following ENTER statement to receive
those arguments:

0020 ENTER A,B,Z$,N{ALL}

Subprograms can alter the value of the arguments passed to them in this manner.
Simple variables passed as arguments become common between the main program
and the subprogram – any changes to these variables in the subprogram will directly
affect the value of the variable in the main program.

This affects only the variables defined by the ENTER directive. All other variables in
the subprogram remain completely independent of variables in the main program. If
you wish to prevent a variable in the argument list from being changed, place
parentheses around it – this makes it an expression rather than a simple variable, so
it cannot be changed. The following table defines the conditions under which a
CALL argument can be changed by a subprogram:

CALL
Directive

ENTER
Directive Description

X Y
Y in the subprogram will be assigned value of X from the main program.
Changes to Y will change X in the main program.

X+nn Y
Y in the subprogram will be assigned value of X+nn from the main program.
Changes to Y will not effect X in the main program.

X(n) Y
Y in the subprogram will be assigned value of X(n) from the main program.
Changes to Y will not affect variable X(n) in the main program.

X(all) Y(all)
Y in the subprogram will receive the complete array defined by X in the main
program. All changes to elements in Y will affect the corresponding element in X.

X$ Y$
Y$ in the subprogram will be assigned value of X$ from the main program.
Changes to Y$ will change X$ in the main program.

X$(...) Y$
Y$ in the subprogram will be assigned value of the substring X$(...).
Changes to Y$ will not affect X$ in the main program.

"Fred" Y$ Y$ in the subprogram will be assigned the value of "Fred".

4. Programming Constructs Called Procedures

ProvideX User’s Guide V8.30 Back 84

Entry Points
When specifying a program name you can also suffix it with an entry point (;entry$)
within the called program; e.g.,

CALL "PROG01;Add_Record",X$,Y$

If the subprogram PROG01 contains:

0010 REM PROG01
0020 INIT:
0030 OPEN (1) "ARCUST",(2) "ARBILL"
0040 EXIT
0100 ! 100 - Add-record logic
0110 ADD_RECORD:
0120 ENTER CST_ID$,CST_NAME$
0130 WRITE (1) CST_ID$, CST_NAME$
0140 EXIT

CALL "PROG01:Add_record" causes the system to open the subprogram PROG01
and commence execution at the label ADD_RECORD rather than at the beginning of the
program. ProvideX internally issues a GOTO directive using entry$ as a statement
reference. Use this feature to create subprograms to act as "libraries" (i.e., multiple
stand-alone routines, each starting at its own entry point).

PERFORM A PERFORM is similar to a CALL directive, in that it also transfers control to a
subprogram; however, when a PERFORM is used to invoke a subprogram, all
variables are made common between the initiating and called programs (no arglist
or corresponding ENTER directive is required); e.g.,

PERFORM subprog$[;entry$]

All variables that are defined, modified, or cleared during execution of the
subprogram will be transferred back to the initiating program. For syntax details,
refer to the PERFORM directive in the Language Reference, p.242.

Subroutines within Subprograms
PERFORM can also access subroutines externally via entry points in the called
program. With this feature, the RETURN statement that is used to terminate the
subroutine in a subprogram automatically returns control to the initiating program.
This allows the same block of code to be accessed internally (GOSUB) as well as
externally (PERFORM). If the subprogram CUSTOMER contains:

0010 ! CUSTOMER - Customer logic
...
0100 GOSUB CHK_TYPE
...

Note: If the CALL statement has fewer arguments than in the ENTER statement, make sure
to maintain the same relative position and type up to the point where the arglist is
shortened (and include error handling options). Otherwise, this will result in an Error
#36: ENTER parameters don't match those of the CALL.

4. Programming Constructs Called Procedures

ProvideX User’s Guide V8.30 Back 85

1000 ! 1000 - Validate customer number
1010 CHK_TYPE: ERR_MSG$=""
1020 IF POS(CST_TYPE$=%CST_TYPE_TBL$)=0 ERR_MSG$="Bad Type"
1030 RETURN

The CHK_TYPE subroutine could be accessed externally via:

1000 PERFORM "CUSTOMER;Chk_type"
1010 IF ERR_MSG$<>"" GOTO ...

DEF FN When a user-defined function is executed, it transfers control to a function procedure –
a single statement (or a sequence of statements) defined for multiple access using the
DEF FN directive. This type of procedure does not require a calling directive (CALL or
GOSUB) because it is invoked via the function name itself.

The following syntax defines a single-line function procedure (function name,
parameters, and associated expression):

DEF FNname[$]([LOCAL]argvar1[,argvar2, …])=expression[$]

For syntax details, refer to the DEF FN directive in the Language Reference, p.67.

All user-defined functions are identified by an FN prefix. The remaining characters in the
function name follow the same rules that apply to Variables. When executing a
user-defined function, the syntax is consistent with System Functions. All functions in
ProvideX accept and process values, and return control (with results) to the statement
where the function was invoked in the main program; e.g.,

-:LIST
0010 DEF FNSUM(A,B,C)=A+B+C
0020 LET D=5,E=6,F=7
0030 LET X=FNSUM(D,E,F)
0040 PRINT X
-:RUN
 18

Depending on how they were defined, functions can return either a numeric value or a
character string. This is determined by the data type represented in the function name,
and by the result of the expression/procedure specified; e.g.,

Parameters used in a function definition must match the variables used in the expression it
represents, as well as the parameters specified when the function is used. In the numeric
example above (FNSUM), if the function uses the arguments 1, 2, and 3 then the variables in
the expression A+B+C will receive these values respectively. While there is no limit to the
number of parameters that can defined, it is imperative that each time the function is used,
the number of arguments and their type (numeric/string) match the parameter list
specified in the DEF FN directive. Any mismatch will generate an Error #25: Invalid
call to user function (Non-existent or recursive). Arguments can also be
defined as LOCAL for processing exclusively within the function procedure.

Numeric: 0010 DEF FNSUM(A,B,C)=A+B+C

String: 0020 DEF FNNME$(X$)=UCS(X$(1,1))+LCS(X$(2))

4. Programming Constructs Called Procedures

ProvideX User’s Guide V8.30 Back 86

Multi-Line Function Procedure
A user-defined function procedure can also be listed over multiple lines. This type of
DEF FN procedure is very similar in appearance to the contents of a GOSUB
subroutine. Use the following syntax to define a multi-line function:

DEF FNname[$]([LOCAL]argvar1[,argvar2, …])
RETURN expression[$]
END DEF

If the DEF FN directive is used without the equals sign/expression in the syntax, it is
used to mark the beginning of a multi-line function definition; END DEF marks the
end. Execution of a multi-line function is terminated via the RETURN statement.
Once completed, the value specified by the RETURN statement will be passed back to
the statement where the function was invoked in the main program.

It is also possible to define an error number within a multi-line function by issuing a
ESCAPE nnn, where nnn is the error to be returned to the calling expression.

Example:
0010 DEF FNPRIME(A)
0020 IF A<2 THEN RETURN 0 ELSE IF A=2 THEN RETURN 1
0030 FOR N=2 TO A/2
0040 LET M=INT(A/N)
0050 IF (M*N)=A THEN EXITTO 0080
0060 NEXT N
0070 RETURN 1
0080 RETURN 0
0090 END DEF
0100 FOR I=1 TO 200
0110 IF FNPRIME(I) THEN PRINT I,
0120 NEXT I

In this example, the multi-line function FNPRIME checks to see if the value given is a
prime number by trying to divide it by all the numbers up to 1/2 of the original
number. If all the numbers fail the function returns 1, otherwise it returns 0.

Global User-Defined Functions
Global variable names can be used in defining user functions. If a global variable
name is used in the DEF FN directive, then this function remains defined for the
duration of the session and in all programs and subprograms.

Example:

0010 DEF FN%TM$(T)=STR(INT(T*60)+INT(T)*40:"00:00")

Once this DEF instruction is executed, the user function FN%TM$ is defined and is
accessible to all programs for the duration of the user session or until a START is
issued. Only single-line functions may be defined as global. Multi-line functions can
never be defined as global.

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 87

Basic Input/Output
The INPUT directive is used to enter data interactively while the program is running.
It issues prompts to the user and processes the responses. PRINT statements may be
used to format and output printable data to a monitor or printer as well as into a file.
ProvideX I/O statements need to reference a channel number in order to access a device
or file. The relationship between a channel and the physical file or device must first be
established via the OPEN directive.

Opening/Closing Devices and Files, p.87
Input Statements, p.88
Output Statements, p.94

Other I/O directives (READ, WRITE, etc.) used specifically for transferring data in
and out of files are discussed in Chapter 5. File Handling. For information on I/O
processing in a GUI environment, see Chapter 6. Graphical User Interfaces.

Opening/Closing Devices and Files
Most input/output operations in ProvideX require a channel number (chan) to
identify the connection to a specific device, interface, or file. These are established
using the OPEN directive, which associates a logical number (normally between 0
and 127) with a physical file or device. Once the chan is defined, the program will be
able to access the input or generate output simply by referencing that number.

In theory, all I/O statements use channel numbers; however, the console (keyboard
and display screen) is defined as channel 0 by default and may be omitted from
INPUT or PRINT statements intended for immediate display.

For files, the OPEN process also sets a pointer to the beginning of the opened file and
allocates system resources. The actual number of files that can be opened at any one
time depends on the operating system. For more information on using OPEN for file
I/O operations, see Chapter 5. File Handling.

channel

The basic syntax for an OPEN statement is provided below.
OPEN

OPEN (chan[,fileopt])string$

Where:

Several OPEN keywords are also available for specific types of file access operations,
including: INPUT, LOCK, PURGE, and LOAD.

Topics

chan Logical channel number to be assigned.

fileopt Various options used for controlling the contents and characteristics of
a data file. See Processing Data Files, p.107.

string$ Name of the file or device to open. The string expression can include a
specialty filename or file tag (e.g., *MEMORY*, [RPC], etc.).

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 88

As mentioned earlier most I/O operations begin with an OPEN directive to establish
the relationship with the target device or file; e.g.,
PRINT "Today's date is ",DAY
OPEN (1)"*WINPRT*;HP Laser Jet;Orientation=Landscape"
PRINT (1)@(0),"Customer",@(45)," Balance"

In this example, the first statement simply outputs text to the screen, which is the
default syntax for PRINT. The second PRINT statement in the example outputs text to
channel (1), which is the identity of a printer made available for use via the
preceding OPEN directive.

CLOSE

The CLOSE directive closes the connection to one or more files/devices and allows
their channel number(s) to be reused. The basic syntax is provided below:

CLOSE {(*) | (chan) [,(chan)...]}

Where:

Input Statements
INPUT

The ProvideX INPUT directive is used to process interactive responses. It can be used
to prompt for, receive, and validate input from the user in a character-based
application; e.g.,

INPUT NUMBER
INPUT "Please enter your name :",NM$
INPUT "Please enter your name",NM$, "Thank You"

Input from the user is stored in the variables specified. ProvideX treats any literals or
expressions included in the statement as prompts. String variables will be assigned
any keyboard characters. Numeric variables must be assigned numeric data only.
Non-numeric input in response to a numeric variable (other than commas and
decimals) will cause an Error #26: Variable type invalid.

For syntax details, refer to the INPUT directive in the Language Reference, p.159.

Example 1:

0010 INPUT "Enter a number:", A
0020 IF A=0 THEN STOP
0030 PRINT "You entered ", A
0040 GOTO 0010

* Asterisk denotes "all OPEN local channels" except channel 0.

chan Channel number.

Note: Local files are closed automatically on a BEGIN or END statement. All files are
closed at the end of a user session or whenever a START directive is issued.

Note: In cases where it is undesirable to echo user input, use OBTAIN in place of the
INPUT. For syntax, see OBTAIN in the Language Reference, p.226

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 89

When the above example is run, it yields the following as the user enters input to the
prompts:

Enter a number:5
You entered 5
Enter a number:1,000
You entered 1000
Enter a number:4.X
0010 INPUT "Enter a number:", A
Error #26 - Incorrect variable type

Example 2:

0010 INPUT "What is your name?", A$
0020 INPUT "How old are you "+A$+"?",A
0030 IF A<18 THEN PRINT "Sorry X-Rated"; STOP
0040

When this is run, it yields the following:

->RUN
What is your name?MIKE
How old are you MIKE?13
Sorry X-Rated
->

The INPUT directive can also receive input from other than just the user console by
specifying a channel of a device to receive from. Channel number 0 zero is used to
identify the console (keyboard and display); e.g.,

0010 INPUT (0,ERR=0100) "Enter amount:", A
0020 LET INTEREST=A*RATE
.......
0100 PRINT "Invalid amount -- Retry"
0110 GOTO 0010

If, in the above example, the user enters invalid numeric data in response to the
Enter amount:, the program would transfer to statement 100. As a different tactic,
statement 0010 could have specified the option ERR=0010, which would result in
the INPUT directive being re-issued until valid data was received.

Default Input Values
Depending on your application, it is sometimes useful to display a default value at
the input prompt. The INPUT EDIT directive can be used to pre-load the input buffer
with the current contents of the specified variable; the user may then choose to edit
the current value or enter a new one.

Note: The INPUT directive is primarily designed for use with terminals, but it can also
be used with other file types. For more information, see Processing Data Files, p.107.

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 90

If the user starts typing, the contents of the variable is re-initialized with a new
value, otherwise the current value can be edited and/or re-entered. In the following
example, INPUT EDIT places the current contents of NAME$ into the input buffer.

0010 NAME$="JOHN DOE", AGE=21
0020 INPUT EDIT "What is your name?", NAME$
0030 PRINT "Hi ",NAME$
0040 INPUT EDIT "How old are you?",AGE:"##0"
->RUN
What is your name?JOHN DOE

At this point, the user can choose to edit the default JOHN DOE or enter a new name.

Formatted Input
An INPUT statement can establish a format to be used on either numeric or string
information during the input cycle. This forces the data to adhere to the format mask
specified (and prevents invalid entries).

To specify a format mask to be used during an input statement, place a : colon and
format string after the input variable; e.g.,

0010 INPUT "Enter Amount:",AMT:"$##,##0.00-"
->RUN
Enter Amount: $0.00

In the above example the format mask specified in the INPUT directive would be
used to control the entering of the value. One major advantage of using formatted
INPUT statements is that no ERR= clause is required since invalid data cannot be
entered. For numeric data within a format mask, ProvideX aligns the data to the
decimal point. See Data Format Masks, Language Reference p.809.

Input Size Control
Two options are available for use with the INPUT statement for controlling the size of
the input data. The LEN= option sets the maximum length of input allowed. If the
user attempts to enter more characters than is specified on the LEN= option, it is
rejected. The SIZ= option sets the number of characters which can be entered after
which the input automatically terminates.

A special feature of the INPUT directive is the ability to allow for scrolling input. By
specifying both LEN= and SIZ= options you can control the maximum length of the
data you wish to have entered as well as the size of the data as it is to appear on the
screen. For example, if you wish to allow the user to enter 100 characters of input but
only wish to have 30 characters appear of the screen, you would specify the
following:

INPUT (0,LEN=100,SIZ=30) X$

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 91

Input Validation
INPUT variables can also include options to validate the values as they are being
received. To specify validation on input, place a : colon followed by conditions (in
parentheses) after the input variable; e.g.,

0010 INPUT A$:("A"=0100,"B"=0200)

This type of validation option is called a branchlist. If the input is "A", control
transfers to statement 0100; If the input is "B", control transfers to statement 0200.
Any number of entries may be included in the branchlist. Each entry is processed as
it appears, from left to right. A branchlist may be specified with either string or
numeric variables. Numeric data is converted only after the branchlist is processed.

String Validation
For input to a string variable, the validation may contain a branchlist as well as an
additional length option. The length option takes the form:

LEN=minimum [, maximum]

The input must contain at least the number of characters specified as a minimum but
no more than the number specified as a maximum. If no maximum is specified, then
the input length must equal the minimum (maximum set to minimum).

In the following INPUT statement, if "END" is entered in response to the prompt
"Name:", then control transfers to statement 0100, otherwise the input string
would have to be between one and twenty characters long:

0010 INPUT "Name:",N$:("END"=0100,LEN=1,20)

If the input is less than one character long (null) or greater than twenty, an Error
#48 is generated. Only one LEN= condition may be specified, and it must follow the
branchlist (if provided). When validating a string variable, an Error #48: Invalid
input is generated if input does not match one of the entries in the branchlist
and/or no LEN= option is provided.

Examples:

The following statement does not have a branch list – input must be exactly six
characters long or an error will occur:

0010 INPUT (0,ERR=0010)"Invoice #:",I$:(LEN=6)

If the LEN=6 condition is not met, the ERR=0010 clause causes the INPUT directive to
repeat.

In the following example, the prompt "Yes or No" is displayed and the variable
C$ is requested:

0010 INPUT (0,ERR=0010) "Yes or No", C$:("Y"=0100,"N"=0200)

The input validation options cause control to transfer to 0100 if "Y" is input, and
0200 if "N" is input. Any other input will cause an error, which due to the ERR=0010
clause, causes the INPUT directive to repeat.

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 92

Numeric Validation
For input to a numeric variable, the validation may contain a branchlist as well as an
additional range check. The branchlist is processed before the input data is converted
to an internal numeric value; therefore, it is possible for non-numeric input to be
processed.

A numeric range check is specified by providing the maximum value to be allowed; e.g.,

0010 INPUT "Enter hour to start:",H:(23)

In this example, the input to H would have to be an integer between 0 and 23. A
number outside of this range generates Error #48: Invalid input. If the value
specified in the range check is positive (greater than zero) then the input must be
numeric between zero and the number specified (inclusive).

The range check can also include negative numbers; e.g.,

0010 INPUT (0,ERR=0010)"Percent: ",P:("X"=0100,-99)

In this example, the input range is between -99 and +99. If the input consisted of the
single character "X", then control transfers to statement 0100. Non-numeric input
or a number outside of the specified range would cause the INPUT directive to repeat
due to the ERR=0010.

The number of digits to the right of the decimal point (in the range value) define the
maximum number of decimal places to be accepted; e.g.,

0010 INPUT (0,ERR=BAD_INP)"Discount:",D:(19.99)

This statement would allow the user to enter a number between 0 and 19.99. Two
digits to the right of the decimal point are allowed. If the input is non-numeric,
outside the range specified, or has more than two digits to the right of the decimal
point, an error is generated and control transfers to the line label BAD_INP.

Any numeric value (constant, variable, or expression) can be used to specify the
range of numeric input. It must follow any branchlist specification within the
validation list. If no range check is specified then the input is only checked for valid
numeric data.

Submitting Input (CTL Values)
From the keyboard, input is received when the user presses . By default, this
keystroke signals to ProvideX that INPUT has terminated and that the entered values can
be submitted for use in the running program. This keystroke also sets the ProvideX CTL
system variable to a specific numeric code (CTL value) representing use of the key.

CTL

Other types of keys can be used to terminate an INPUT statement. The CTL values
assigned to keyboard actions are listed as follows:

0 key (normal)

1 - 4 to keys

5 Input terminated due to SIZ= option

6 - 12 to keys

Enter

Enter

Enter

F1 F4

F6 F12

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 93

Example:

0010 INPUT "Enter customer id:",CST_ID$
0020 ON CTL GOTO 0030,0010,0010,9000,9000
0030 INPUT "Enter date:", DTE_ID$
0040 ON CTL GOTO 0050,0030,0030,0010,9000
0050

In fact, all user input (keyboard or mouse) can be mapped to user-specified actions
via CTL values and the CTL system variable. Programs can test this variable during
user interaction to determine what action is to be taken. Use of CTL values and the
CTL system variable is discussed in other sections later in this manual, most notably,
Chapter 6. Graphical User Interfaces and Chapter 9. External Components.

Positive CTL values represent function/control keys and can also be applied to
other input signals that are returned to the user application. These CTL values may
be defined/redefined using the DEFCTL directive; however, the replacement only
occurs when the original value is rejected. See DEFCTL, Language Reference p.77.

DEFCTL

Negative CTL values have special significance in ProvideX. They have fixed
definitions and are handled internally by the system. The complete list of Negative
CTL Definitions are provided in the Language Reference, p.813.

Input editing can also be overridden using the 'BI' and 'EI' (Input Transparency)
mnemonics; in which case, you will receive the CTL values directly. A variation is to use
the 'ME' and 'MN' (Edit Mode) mnemonics, which deal with all CTL values that can be
handled directly by ProvideX, but will pass any invalid requests on to the program.

CTL Subroutines
The SETCTL directive can be used to simplify the processing of CTL values by
transferring control to a subroutine whenever a specified CTL value is received by an
INPUT statement. See SETCTL, Language Reference p.303. When the subroutine
returns, the INPUT statement is re-executed; e.g.,

SETCTL0010 SETCTL 4:WRAP_UP
0020 SETCTL 3:BACK_UP
...
0300 BACK_UP:
0310 FLD_NO=FLD_NO-1
0320 EXITTO 0110
...
9000 WRAP_UP:
9010 END

This directive can simplify the coding of programs that implement several INPUT
statements and is ideal for the reuse of CTL processing procedures.

Note: In character-based ProvideX, the standard convention for (CTL = 4)
terminates the program, and (CTL = 3) backs up one field.

F4
F3

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 94

Output Statements
PRINT

The PRINT (?) directive is used to format and output printable data. If the data is
intended for a printer or file, the PRINT statement must include a valid channel
number; otherwise, the output is displayed immediately at the console. In this
section, the primary focus is on output operations as they apply to the console.

PRINT supports the ability to position output and allows insertion of special control
codes through the use of Mnemonics, p.30. The basic PRINT statement appears as
follows:

PRINT list

Where list is a comma-separated list of variables, literals, expressions, mnemonics, or
screen positions. For syntax details, see PRINT, Language Reference p.251.

All data sent to a display device must be in ASCII format. String variables and string
literals are maintained in ASCII and are displayed as is. Numeric data is maintained
in binary format and is converted to ASCII automatically. It is important that string
variables only contain printable characters. Attempting to print control sequences to
the screen may cause unpredictable results.

By default, each PRINT statement advances one line on the console after outputting
the data. This automatic advance can be overridden by terminating the output list
with an extra (hanging) comma, in which case data from the next PRINT is appended
to the current line; e.g.,

->0010 LET A=4, B=5
-:0020 PRINT "Multiplying ",A," times ",B
-:0030 PRINT " results in ", A*B
-:run
Multiplying 4 times 5
 results in 20

If line 20 includes a hanging comma the result will appear on the same line; e.g.,

->0010 LET A=4, B=5
-:0020 PRINT "Multiplying ",A," times ",B,
-:0030 PRINT " results in ", A*B
-:run
Multiplying 4 times 5 results in 20

Format Masks
A format mask is a character string that is used in an input or output statement to
describe how data is to be filtered, displayed, or printed. Masks are most often
applied to the display/printing of numeric data (PRINT directive). The INPUT
directive may apply masks to the display of prompts as well as in the filtering of

Note: Use of the PRINT directive to output data to printers or files is covered in
Chapter 5. File Handling and Chapter 7. Printing.

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 95

incoming data. Masking may also apply to the conversion/validation of a string; i.e.,
the STR() function. For the complete list of numeric and string masks, see Data
Format Masks, Language Reference p.809.

To assign a format mask in ProvideX syntax, place a colon before the mask following
the given data value:

val[$]:mask$

Where mask$ may be a literal string, a string variable, substring, or a string
expression (concatenation); e.g.,

0010 PRINT "The total is ",A:"$#,###,##0.00CR"

Numeric format mask characters are used to convert numeric data (from literals,
variables, or numeric expressions) to ASCII. String data can also be converted
through the use of format masks. However, unlike numeric format masks, string
format masks are typically used to validate that the contents of a string match a
pre-defined format.

When more characters exist in the data value than are specified in the format mask,
the result will generate an Error #43: Format mask invalid; e.g., outputting
1000 with a mask of "##0" causes an error. However, the system parameters 'FI' and
'FO'= can be specified to handle overflows without generating errors.

Unformatted Output
If no format mask is specified when outputting numeric values, the system formats
the value based on certain criteria. More information on this is provided in the
Language Reference, p.809.

Output Positioning
The @() system function can be used to position output at specific column and line
coordinates. This function can be used with directives wherever text is to be sent to
an output device, most commonly in a PRINT or INPUT statement. The format for the
@() location function appears as follows:

@(column[,line])

Where the column represents a column position (0 to the number of columns
available on the screen -1) and line represents an optional line number (0 to the
number of lines available on the screen -1).

For example, the following statement prints the date in the upper left hand corner of
the screen with the time starting in column 75 of the top line:

PRINT @(0,0),"Date: ",DAY,@(75),TIM

More information see @() in the Language Reference, p.388.

4. Programming Constructs Basic Input/Output

ProvideX User’s Guide V8.30 Back 96

Controlling Output
Special control sequences (Mnemonics, p.30) can be inserted within an output
statement (PRINT or INPUT) to invoke such functions as clearing the screen,
positioning the cursor, changing the colour of characters, setting/resetting various
attributes, or enabling/disabling I/O modes; e.g.,

PRINT 'CS',"File maintenance",'LF'

As the above PRINT statement is executed, it clears the screen ('CS'), displays "File
maintenance" in the upper left corner of the screen, then advances one line ('LF').

All mnemonics are enclosed within single quotes. Some require arguments (e.g.,
PRINT 'CIRCLE'(720,600,100,1)). Some are represented by more than one
keyword: a long form or short form (e.g., 'PUSH' or 'WC'' can be used to copy the
current window).

Use of an invalid mnemonic, or one that is not applicable to a particular device,
results in Error #29: Invalid Mnemonic or position specification.

ProvideX developers can also define/redefine their own 2-character control
sequences via the MNEMONIC directive. For example, to assign settings for the
ProvideX mnemonics 'CP' and 'SP':

MNEMONIC(0)'CP'="Courier New,-8":120,40
MNEMONIC(0)'SP'="*":80,25

When a defined mnemonic is encountered in a PRINT or INPUT statement, the system
converts it to the character string specified. For further details on mnemonic
definitions, refer to the MNEMONIC directive in the Language Reference, p.210.

Note: Mnemonics are specific to the channel on which they are defined and are only valid
while the channel remains open. When the channel is closed, the mnemonics are cleared.

ProvideX User’s Guide V8.30 Back 97

User’s Guide 5
 File Handling

From a computing perspective, a file is simply a named storage location on disk that
contains a collection of data. There are many different types of files: text, programs,
documents, directories, ASCII, binary, etc. It is the contents of a file that determines
how it will be used; for example, a ProvideX data file contains information that is
organized specifically to be accessed for processing by a ProvideX program.

This chapter focuses primarily on the ProvideX operations for creating data files,
and for transferring data in and out of different data file types.

Data Files, p.98
Processing Data Files, p.107
Embedded I/O Procedures, p.118
File Naming Conventions, p.122
Prefix Processing, p.122
Foreign File Access, p.126
Views System, p.127

As mentioned in Chapter 1, all aspects of ProvideX are designed to work seamlessly
together while at the same time interface with other external components. This is
also true with regards to data handling. Internally, all ProvideX database and file
systems are viewed as datasets which can be accessed either sequentially or by key
(such as a client or product identifier). ProvideX datasets can be accessed quickly
and easily and their format is designed for maximum performance while simplifying
accessibility and maintainability.

The native file system in ProvideX is optimized for small to mid-range systems but it
includes all the features required to develop and maintain large-scale business
applications. ProvideX supports transparent access to external databases. Built-in
rollback and recovery is available for maintaining data consistency. Other features
include the Views system, the ability to include embedded I/O processes to
filtering/handling data, along with dynamic index creation and deletion.

Topics

Note: For information on the options that are available for storing and retrieving data,
outside access to ProvideX data files, and the handling of third-party data formats
(Oracle, Microsoft SQL, etc.) see Chapter 10. Data Integration.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 98

Data Files
Prior to this chapter, most of the discussion of data has centred on how it is input,
manipulated, and output at runtime. However, when processing large volumes of
data, it becomes necessary to place output into a separate storage area called a data
file. This generally involves the use of various program instructions for creating the file,
opening the file, writing to or reading from the file, and closing the file.

Each data file contains a collection of data organised in a specific format and for a
specific purpose, which is stored somewhere in external storage. This section
explains how to create data files and discusses the various Data File Types that are
available for use in ProvideX.

Records and Fields, p.98
Creating, Deleting, and Renaming Data Files, p.99
Serial, p.99
Indexed, p.100
Keyed, p.101
Enhanced File Format, p.106

Records and Fields
The contents of a data file is usually grouped into logically-related pieces of
information called records. Records are generally composed of one or more fields, each
of which contains a single item of information.

For example, a Customer file might contain records, where each record is comprised of
three fields: a Name field, an Address field, and a Phone number field. Each record is
maintained in the file using a separator between fields. ProvideX uses the character
Hex $8A$ as a default field separator:

A number of different ProvideX programs should be able to access this file for
writing and retrieving data.

Topics

Record 1 Field 1 Field 2 Field 3 Field 4
Record 2 Field 1 Field 2 Field 3 Field 4
Record 3 Field 1 Field 2 Field 3 Field 4
Record 4 Field 1 Field 2 Field 3 Field 4
Record 5 Field 1 Field 2 Field 3 Field 4

 The default field separator character is a Hex $8A$.

Note: The SQL environment uses the terms rows and columns for records and fields.
This is further explained in Chapter 10. Data Integration.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 99

Creating, Deleting, and Renaming Data Files
D ata File Types

After input and processing operations are complete, the resultant data can be saved to a
file that is structured to facilitate future access. ProvideX supports the creation of
different types of data files and record formats. Each of these file types has its
advantages and disadvantages for storing and retrieving data:

The ProvideX file creation directives (described in the sections that follow) are
designed to not only define data files but to initialize the control information within
these files – each is associated with a specific format. The syntax for creating the
different file types and record formats is documented in the sections that follow.

ERASE is the directive used to delete a file or directory. This deletes all the records
from the file and de-allocates the disc space for the file. Two other directives, PURGE
and REFILE logically delete all records from a file but leave the file defined to the
system. The FILE directive is used to recreate a file given its file description (returned
by FIB() or FID() function). The RENAME directive allows the user to rename a file
(or on some operating systems a directory).

Serial These are native OS flat files containing one or more records of variable length.
Normal uses for serial files include holding print images or reports, or for
interchange with other operating system applications. READ, WRITE, PRINT and
INPUT directives may be used on a serial file (see Processing Data Files, p.107).

The SERIAL directive is used to create a serial file:

SERIAL filename$[,max_recs[,rec_size]]

Where:

Serial Native OS records can vary in length and are typically accessed in a
sequential manner from beginning to end.

Indexed Records are the same length and are accessed by index number.
Keyed The most common file type used in ProvideX. Each record has at least

one key field and up to 15 alternate keys for FLR/VLR files (255 for
EFF). This type of file may be accessed by any key field, by index, or
sequentially. The record formats for keyed files may include FLR
(fixed-length records padded with 00), VLR (variable-length records),
and EFF (enhanced file format). Keyed files are also categorized
according to the how the key is being used:

Direct Files, consisting of an external key plus data.
Sort Files, consisting of keys but no data.
Multi-Keyed Files, consisting of one or more keys plus data.

filename$ String variable that defines the name of the serial (sequential) file to create.

max_recs Estimated number of records the file is to contain. The default is no initial
allocation of file space, with no limit as to final size. (Not used in most
operating system implementations.) Numeric expression.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 100

Example: SERIAL "filename"

On a serial file, the READ directive reads the file one record at a time, from beginning
to end. WRITE appends data to the end of the file. Any attempt to READ after a
WRITE without having either closed the file or re-positioned the pointer via the
IND= option will result in an Error #2: END-OF-FILE on read or File
full on write. A serial file must be locked in order to WRITE. The 'LU' parameter
can be used to eliminate the need to lock a serial file before writing to it.

Example:

0010 OPEN (2) "SERFIL" ! Open SERFIL as 2
0020 READ (2,END=1000) NAM$, ADR$! Read next
0030 PRINT NAM$, ADR$
0040 GOTO 20
1000 CLOSE (2)
1010 END

The system provides an internal key for a serial file that may be used to reference
records. This internal key is 4 characters long and contains the actual address of the
record in binary.

When issuing a WRITE to a serial file it must first be locked. The position of the last
write prior to the file being closed marks the end-of-file.

Indexed In this type of file, the records may be accessed by index number. Each record on the
file is assigned a record index, starting from 0. While the storage space allocated for
each record is the same, the contents of the record must fit within the defined record
size, with extra spaces padded with 00. All records in an indexed file are the same
length. No keys are maintained for indexed files.

The INDEXED directive is used to create an indexed file:

INDEXED filename$,[max_recs],rec_size[,SEP=char$]

Where:

rec_size Maximum size of the data portion of the record. (Optional on most
operating systems.) Numeric expression.

Note: The end of line for a serial file is typically OS dependant and is normally a Hex
$0A$ on UNIX/Linux systems and Hex $0D0A$ on Windows.

Also, when processing a typical serial file, a WRITE directive will append a Hex $8A$
field separator to each record while the PRINT directive will not.

char$ Separator character. Hex or ASCII string value.

filename$ Name of the indexed file to create. String expression.

max_recs Maximum number of records in the file. Optional numeric expression.
Default is no initial allocation of file space, with no limit as to final size. 0
zero indicates that the number is dynamic.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 101

Example: INDEXED "filename",,100

Indexed files support all I/O directives except REMOVE (see Processing Data Files,
p.107). Whenever an indexed file is read or written to, the current file position is
updated to the record index selected; e.g., if a read is issued for record index 80, a
read of the next index returns record 81.

The READ directive without an index specified returns the record with the next
record index. Attempting to READ a record whose index exceeds the highest index
written results in an error.

A WRITE directive without an index specified overwrites the record with the next
record index. Attempting to write a record whose index exceeds the highest
previously written results in all intermediary records being initialized with Hex
zeroes except where the index specified exceeds the maximum record size for the
file, in which case an error is returned.

Example:
0010 OPEN (2) "ORDFIL" ! Assign ORDFIL to channel 2
0020 OPEN (3) "ORDLIN" ! Assign ORDLIN to channel 3
0030 NEXT_LINE: INPUT "Enter order number:",ORD_NUM
0040 IF ORD_NUM = 0 THEN END
0050 READ (2,IND=ORD_NUM,END=0030) ORD_CST$,ORD_DTE$, ORD_LINES
0060 PRINT "Order:", ORD_NUM, " Cust:", ORD_CST$
0070 READ (3,IND=ORD_LINES) LIN_QTY, LIN_ITEM$, LIN_AMT, LIN_NEXT
0080 PRINT LIN_QTY:"##0:", LIN_ITEM$,@(60), LIM_AMT
0090 IF LIN_NEXT = 0 THEN GOTO NEXT_LINE
0100 ORD_LINES = LIN_NEXT
0110 GOTO 0070

Keyed This is the most common file format used in ProvideX. It contains at least one unique
(primary key) field that identifies each record on the file. ProvideX supports
internally and externally defined keys with record sizes up to 2GB. There are a wide
variety of key segment options.

Keyed files support fixed-length (FLR) and variable-length (VLR) records as well as the
ProvideX Enhanced File Format (EFF). Up to 16 keys and 96 segments are supported for
FLR & VLR based files while EFF increases these to 255 keys and 255 segments per key.
EFF files are further discussed under Enhanced File Format, p.106.

A positive value indicates that the file is pre-sized to the specified
number of records – an Error #2: END-OF-FILE on read or
File full on write will be generated if an attempt is made to add
more than this specified number of records, or access an IND= value
above this limit.

rec_size Size of the data portion of each record.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 102

Three types of Keyed files can be created:

Direct Files consisting of an external key (FLR/VLR, EFF)
Sort Files consisting of keys but no data (FLR/VLR, EFF)
Multi-Keyed Files consisting of one or more keys (FLR/VLR, EFF).

All ProvideX I/O directives work with keyed files (see Processing Data Files,
p.107). The READ directive without a KEY= option reads the record with the next
higher key. When reading a file with an external key, it is normal to first retrieve the
key of the next record; e.g.,

k$=KEY(1,end=done)
read (1,key=k$)

The WRITE directive without a KEY= option is invalid unless the record was
previously extracted or has an imbedded key (see Multi-Keyed Files, p.103).

The REMOVE directive deletes the record whose key matches the key specified. When
the record is deleted its associated disk space is returned for re-use within the file.

Accessing or attempting to access a record whose key does not exist positions the file
pointer to the next higher existing key. The only exception is when using the FIND
directive. This directive is a variation of the READ verb that does not update the
current file pointer if the key is not found.

Example:
This assumes the file ACTNME has a key of name with a data field of account number.

0010 OPEN (2) "ACTNME" ! Assign ACTNME to file 2
0020 INPUT "Enter name:",NM$
0030 IF NM$="" THEN END
0040 K$=NM$
0050 READ (2,KEY=K$,DOM=0070) A_NUM$! Read record info
0060 PRINT A_NUM$, " ", K$
0070 K$=KEY(2,END=0020) ! Get next higher key
0080 IF K$<=NM$+FF THEN GOTO 0050
0090 CLOSE (2)

Direct Files
A direct file is a keyed file with an external key. The key size must be specified along
with the file name. The DIRECT directive is used to create a direct file:

DIRECT filename$,max_len[,max_recs[,rec_size]]

Where:

filename$ Filename of the DIRECT (Keyed) file. String expression.

max_len Maximum length of the key for all records in the file. Numeric
expression, integer.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 103

Example: DIRECT "CSTFLE",6

Sort Files
This type of keyed file consists of a key only, with no data record portion. Key-size
must be specified along with the file name. The SORT directive is used to create a
sort file:

SORT filename$,max_keysize[,max_rec]

Where:

Example: SORT "CSTFLE",6

Multi-Keyed Files

The KEYED directive can create a file with one or more keys. The primary key may
be external or internal. If the first field after the filename is a number, an external file
key is created; if it contains a key definition (enclosed within []) then only internal
key fields may be used.

KEYED

The first key specified is considered the primary key. Every record must have a
unique primary key. You can have duplicate secondary keys from record to record.

A multi-keyed file is a keyed file with one primary record key and up to 15/255
secondary keys. The primary key must be unique within the file, while the
secondary keys may be duplicated between records; e.g., where two JONES may
exist. Multi-keyed files are defined like any keyed file except that the key definition
contains a series of comma-separated key declarations. The first key declaration is
for the primary key; the remaining declarations are for secondary keys.

max_recs Maximum number of records in the file. Optional numeric expression.
Use a comma with no value to set the default (zero - unlimited). If a
positive value is supplied, ProvideX creates and pre-allocates disk
space for the file (for FLR/VLR formats). With a negative value,
ProvideX allocates sufficient disk space for the file (for FLR/VLR
formats), but will set max_recs back to zero.

rec_size Maximum size of the data portion of each record (excluding the key).
Optional. Numeric expression. You can use:
No Value: Default is VLR with maximum size of 256.
Positive Integer: FLR of size specified.
Negative Integer: VLR with maximum length specified.

filename$ Name of the SORT file to create. String expression.

max_keysize Maximum key size to be maintained for this file. Numeric
expression.

max_rec Estimated number of records that the file is to contain. Default is no
initial allocation of file space, with no limit on final size. Numeric
expression.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 104

The KEYED directive is used to create a file with one or more keys:

KEYED filename$,[,extkey_len][,key_def$][,max_recs[,rec_size]][,fileopt]

Where:

filename$ Name of the file to create. String expression.

extkey_len Numeric expression. Length of the external key for all records in the file.

key_def$ String expression defining the key. The Keyed file can be single- or
multi-keyed. A key definition is made up of one or more key field
definitions ranging 0 to 15 for FLR/VLR files or 0 to 255 for EFF files.

The key definition formats are as follows:

Single key field:
[["keyname":]field:offset:len[:"attr"]]

Composite key fields (using the + operator):
[["keyname":]field:offset:len[:"attr"]]+[field:offset:len[:"attr"]]

Multi-keyed alternate key fields are comma-delimited:
[["keyname":]field:offset:len[:"attr"]], [["keyname":]field:offset:len[:"attr"]]
Where:
keyname Name of key assigned for use in KNO=name$ options.
field Integer representing specific field number, 0 zero for

record-based offset, or KEY to indicate an external key; e.g.,
[KEY:1:6]+[2:1:30].

offset Starting position within the field (integer, 1 to 3839).
len Length, number of characters in the key field (integer).
"attr" Attribute characters.

: Colon - the separator for elements in a key segment.
Note: The outer set of square brackets in the above formats are part of the
syntax; the inner brackets indicate optional syntax items (i.e., the brackets
enclosing the optional [:"attr"] are not part of the syntax).

max_recs Maximum number of records the file is allowed. Optional numeric
expression. The default is zero (no limit). (Use a comma with no value to
set the default.) If a positive value is supplied, ProvideX creates and
pre-allocates disk space for the file (for FLR/VLR formats). With a negative
value, ProvideX allocates sufficient disk space for the file (for FLR/VLR
formats), but will set the max_recs count back to zero (unlimited).

rec_size Maximum size of the data portion of the record (excluding the key). A
negative value creates a variable-length record (VLR) data file with the
maximum record length equal to the positive value of this field. A positive
value creates a fixed-length record (FLR) formatted file. If you do not
specify size, the default is VLR with a maximum record size of 256. The
maximum block size for a VLR file is 31KB and the maximum record size
is 31000 bytes. Attempting to create a VLR file with a record size more
than 31000 bytes results in an FLR file with the requested record size.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 105

Internal keys are defined as follows:
KEYED "CSTFLE",[1:1:6],[2:1:10],,500

A multi-keyed file may contain an external and several internal keys:
KEYED "CSTFILE",6,[1:1:6],[2:1:10],,500

If desired, a composite key can be generated using the '+' operator to concatenate
several data fields, which will form a complete key:
KEYED "CSTFLE",6,[2:1:10]+[KEY:1:6]

There is a limit of 96 total data fields allowable in a file for use within keys (on
FLR/VLR files). This means that the total number of data fields that can be used to
define keys must be no more than 96 with the maximum number of keys being 1
primary and 15 secondary. If, for example one key consists of twenty data fields, the
maximum number of additional fields would now be limited to 76 for a total of 15
keys, 96 data fields.

If no external key is desired on the file, only key descriptors would be specified with
the first key descriptor being considered the primary key.

Using the Secondary Keys
For the purposes of accessing multi-keyed data files each key is assigned a key
number. The primary key is assigned the key number of zero (0), the first secondary
key is assigned one (1), and so on. When reading a multi-keyed file the system
performs the read based on the current key number being used. The key number is
specified by the KNO= option in the WRITE, FIND, EXTRACT directives or any of the

fileopt Supported file options:
BSZ=num Block size. Numeric expression (1 - 63).
ERR=stmtref Error transfer.
SEP=char$ Default field separator character. Hex or ASCII string value.
OPT=char$ Single character parameter; i.e.,
"C" - Compressed. Adds simple compression to record data.
"X" - Extended Record Size. Extends record sizes up to 2GB per record.
"0" - Create VLR/FLR files (default if 'KF'=0)
"1" - Create EFF Files with 2GB limit.
"2" - Create EFF Files without 2GB limit (supported platforms).
"Z" - Set ZLib Compression for VLR and EFF Files.
Note: OPT="2" generates Error #99: Feature not supported
on platforms that do not offer Large File Support (LFS). Using options
"Z" and "C" together will result in an Error #32.

Note: If, when generating a key, the descriptor references data outside the data field
(either by an offset outside of field specified or a length which exceeds the field
length) and the descriptor is other than the last descriptor within a composite key,
the key is padded with Hex 00 in order to achieve the length specified.

5. File Handling Data Files

ProvideX User’s Guide V8.30 Back 106

key functions; i.e., KEC(), KEF(), KEL(), KEN(), KEP(), KEY(). Once KNO= is
specified it remains the current key number until changed by a subsequent KNO=
option. When a file is initially opened, the key number is set to zero (primary key).

All file input directives function basically the same on multi-keyed files as they do
on normal single keyed files. One exception is the READ(n,KEY=xxx) directive on
secondary keys. This directive will read the first record that contains the desired key.
Specifying a KEY= on an alternate key that contains duplicates will result in what
appears to be an endless loop; i.e., the read will continue to re-position the key
pointer to the first of the duplicates. Therefore, do not use the KEY= option in this
case.

Updating Multi-Keyed files
Adding or updating records on a multi-keyed file uses the same WRITE directive as
does a single-keyed file. The record to be changed or added is determined by the
primary key. If the file contains an external primary key, the KEY= option must be
specified in the WRITE statement. If the file does not contain an external key then the
key will be determined by the data fields presented in the WRITE statement.

The REMOVE statement is used to delete a record from a multi-keyed file. The KEY=
option is recommended on the REMOVE directive. The key specified must be the
primary key of the record to be removed regardless of whether the key is external or not.
If the KEY= option is not specified, then the last record read or extracted will be
removed.

Enhanced File Format
EFF

Enhanced File Format (EFF) allows for single files up to 504 gigabytes in size. These
are 64-bit and are intended for LFS (Large File System) operating systems that
provide 64-bit file addressing and locking functions. Operating systems that do not
provide 64-bit file functions are also able to read/write this format, but only within
a 2GB limit.

The CREATE TABLE directive is designed for creating EFF files on platforms that
support LFS, 64-bit addressing. It uses the same syntax as the KEYED directive
(described in the previous section):

CREATE TABLE filename$,[,extkey_len][,key_def$][,max_recs][,rec_size][,fileopt]

EFF files can also be created with the KEYED directive by setting the 'KF' system
parameter (KF"=1 or"KF"=2) or by including OPT="1" or OPT="2" in the syntax.

Note: If a KEY= option is specified in a WRITE directive and no external key exists or
conversely if no KEY= option is specified and an external key does exist an Error
#80: Invalid key definition, number or name is generated.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 107

Processing Data Files
This section covers the different methods that are available for transferring data
to/from a ProvideX data file

File Processing Directives, p.107
File Processing Functions, p.110
Processing Records, p.111
Accessing Directory Files, p.112
File Locking - Reserving a File for Exclusive Use, p.113
Record Locking - Sharing Critical Information, p.113
Input/Output Parameters, p.114.

As discussed in Chapter 4, file access requires an OPEN statement to establish a
connection before I/O operations can take place. This process involves setting a
pointer to the beginning of the opened file, allocating system resources, and
assigning a file number from (1 to 63 for local files, and 64 to 127 for global files).
Extended file mode ('XF' parameter) expands these ranges from 0-32767 for local
files, and 32768-65000 for global files.

Once a file is opened, all further references to that file are handled via the assigned
channel/file number. The actual number of files that can be opened at any one time
depends on the operating system. Once a file number is assigned to a file it cannot be
reused until the file is closed, typically by the CLOSE directive.

Most applications will be accessing data and program files in more than one location
(different directories, drives, etc.). While files can be referenced directly via their
complete path name, dealing with the different locations and path formats can
sometimes be problematic. ProvideX has the ability to set default file search rules to
simplify this process (see Prefix Processing, p.122).

ProvideX also has the ability to OPEN OS sequential (flat) files in order to transfer of
data from non-ProvideX applications. See Foreign File Access, p.126.

File Processing Directives

The following ProvideX directives are used for handing file input and output:

Topics

INPUT Issues prompts to the screen and to process responses. The channel
referenced is normally an I/O device but an indexed file may be used.

PRINT Formats and outputs printable data to a file, printer, or display device.
This instruction also processes mnemonics and positioning information.

READ Loads data from a file. The parameter list must contain only variables
that are loaded from the record read. These receive the contents of each
of the record fields in the order in which they are specified in the
parameter list. See also, Processing Records, p.111.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 108

These directives use similar syntax and options, which are described below. You can
also query and read records from a specified data file using the directive
SELECT..FROM..NEXT RECORD, p.110.

Format
As mentioned, all INPUT, PRINT, READ, FIND, EXTRACT, REMOVE and WRITE
statements have a common format for processing data files:

directive (chan[,fileopt])[varlist]

Where:

Complete documentation on each of these directives is provided in Chapter 2 of the
ProvideX Language Reference. See Data Files for details on how these file
processing directives are used for handling the different types of files and record
formats.

As an alternative to the READ directive, use FIND to read the file without
moving the pointer if the record is not found. The EXTRACT directive
reads the file and automatically locks the record until the next I/O
operation on the channel.

FIND Reads data from a file where data is split into fields (separated by current
delimiter or defined by embedded format, headers, etc.) with the contents
of the first field placed in variable 1, the second into variable 2, and so on.
See also, Processing Records, p.111

EXTRACT Reads data from file where data is split into fields (separated by current
delimiter or defined by current delimiter or in an embedded IOList
format) with the contents of the first field placed in variable 1, the second
into variable 2, and so on. This locks the record until the next I/O
operation on the channel. See also, Processing Records, p.111

WRITE Writes a record to a file. In the case of indexed or keyed files this may
rewrite existing records. The values specified in the parameter list are
written into consecutive fields, each separated by a field separator (Hex
$8A$) or formatted as per format specifications in the list. See also,
Processing Records, p.111.

REMOVE Deletes a record from a keyed file. No parameter list required.

directive INPUT, PRINT, READ, FIND, EXTRACT, REMOVE, or WRITE directive.

chan Channel/logical file number of target file (see Processing Data Files,
p.107).

fileopt Supported file options. See Options, below.

varlist Comma-separated list of variables, literals, expressions, or mnemonics
to be processed. See Input/Output Parameters, p.114.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 109

Options
The following file options are used with various I/O directives to fine-tune the
operation and redirect processing:

ProvideX checks that any options selected match the directive. The order of the options
is irrelevant; inconsistent options (such as having both IND= and KEY=) are rejected. In
the case of multiple error transfers, (DOM=, END=, and ERR=) DOM= and END= take
precedence. A complete list is provided in the Language Reference, p.806.

BSY=stmtref Statement number to transfer to if the record is currently
locked by another process.

DOM=stmtref Indicates the statement number (stmtref) to transfer to if the record
referenced by the directive is either missing (in the case of READ) or
already exists (on WRITE).

END=stmtref Traps the end of the file on a READ (Error #2: END-OF-FILE
on read or File full on write); on a WRITE directive
causes a transfer if the output file has reached its maximum
size or no more file space is available.

ERR=stmtref Indicates the statement (stmtref) to transfer to if an error occurs
during processing of the directive.

IND=num Specifies record index value used to uniquely-identify a record in
indexed and keyed files. For fixed length keyed files, num
represents an offset into the data file (first record has an index of 0,
second is 1, and so on). For variable length keyed files, num
represents a logical page address and record index within that
page. Used with the INPUT directive, IND=num sets the starting
position (column number) of the cursor in the input field.

When processing a file in Binary mode via the ISZ= option,
IND=num identifies the record address to access when the file
is opened.

KEY=string$ Specifies the record key value used to uniquely-identify a record.

LEN=num Limits the length of the input data. If this option is specified in
an INPUT statement, only the number of characters specified by
num will be read.

KNO=num|name$ Access key number (num) or name (name$), where num is 0
based (0-15 for VLR/FLR files, 0-255 for EFF files).

RNO=num Specifies the record number within the file based on actual key
sequence position; first record in the file is RNO#1.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 110

SELECT..FROM..NEXT RECORD
Use the SELECT directive to open, read and query records from the specified data file
or just to read data from a specified file number. As each record is read, ProvideX
processes any logic included between the SELECT and NEXT RECORD keywords in
the statement. When ProvideX encounters NEXT RECORD with no records found for
a nested SELECT, it will locate the corresponding SELECT statement.

If a WHERE clause is included, ProvideX will process only those records where the
condition is true. BEGIN and END are only supported for KEYED and *MEMORY*
files and for use with External Databases, p.320.

0010 SELECT IOL=0100 FROM "CUST_FILE",KNO=1 BEGIN "ABC CO" END
"NEW CO" WHERE CITY$="CLARENDON"
0020 PRINT REC(IOL=0100)
0030 NEXT RECORD
0100 IOLIST CUST$, NAME$, ADDR1$, ADDR2$, CITY$, PROV$, POSTAL$,
INV_DT$, AMT, TERMS, DUE_DT$
0110 PRINT "DONE"; END

If ProvideX is instructed to exit the SELECT loop early (with an EXITTO directive) the
file will be closed. SELECT can also be used to read data from tables in a SQL
database. See SELECT..FROM..NEXT RECORD in the Language Reference, p.295.

File Processing Functions
There are twelve file processing functions – all expect a file number as first argument.

FID() Returns a description of characteristics of the file specified; returns 1 of 5
formats depending on the 'FF' parameter.

FIB() Same as FID() but always returns ProvideX native format.

FIN() Returns detailed physical aspects of file specified.

IND() Returns an index of the next record in the file. Generates an error at
end-of-file.

KEC() Returns a key of the current (last read/written) record. Generates an
error at start of file.

KEF() Returns the key of first record on the file. Generates an error if no records exist.

KEL() Returns the key of the last record on the file. Generates an error if no
records exist.

KEN() Returns the key of the record after the next record to be read.

KEP() Returns the key of the previous record - keyed files only. Generates an
error at the start of file.

KEY() Returns the key of next record. Generates an error at the end of file.

RCD() Returns contents of a record – equivalent to READ RECORD (see
Processing Records, p.111).

RNO() Returns the record number of a specified record, in key sequence.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 111

Processing Records

As mentioned earlier in the chapter, file data is usually grouped into Records and
Fields, p.98. The File Processing Directives, described earlier, are typically used to
read/write records in a file separating the data into one or more fields.

Record-Specific Directives
In some cases it is necessary to read the contents of a record from a file that does not
contain fields; e.g., when reading data files not created by ProvideX or writing data
files that are to be processed by some other application. To handle files of this type,
ProvideX includes a set of record-specific directives. In these cases only a single
string parameter can be specified in the parameter list.

The READ RECORD directive reads the record specified and place its contents into
the string variable specified in the parameter list. The WRITE RECORD directive
writes the string specified in the parameter list to the file without the insertion of a
field separator. If the file contains fixed length records, the WRITE RECORD
statement will append nulls (Hex 00) to the record being written. Other
record-specific directives include FIND RECORD and EXTRACT RECORD.

EXTRACT RECORD

Example:
0010 OPEN INPUT (1) "." ! open current directory
0020 READ RECORD (1,END=DONE)R$
0030 PRINT R$
0040 GOTO 0020
0050 DONE: CLOSE (1); END

-: run

MEMORY File
MEMORY

A *MEMORY* logical file is simply a memory-resident queue of records that can be
accessed by index or (external) record key. The system functions KEC(), KEF(),
KEL(), KEN(), KEP(), KEY(), and IND() will work with a memory file. As well you
can access memory files by record number, RNO(). The record index will equal the
logical placement of the records in key order sequence. For complete syntax details,
see *MEMORY* in the Language Reference, p.737.

Creating/Deleting the file. Two types of memory files may be created. The
following syntax creates a memory-resident queue of records:

OPEN (chan) "*MEMORY*"

The following creates a memory-resident multi-key file similar to a regular keyed file:

OPEN (chan[,fileopt])"*MEMORY* [;KEYDEF=key_def$]"

The following syntax deletes a memory file and returns memory to the system:

CLOSE (chan)

Keyed (Direct File) Handling. The following syntax adds/updates a record:

WRITE (chan, KEY=string$) iolist

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 112

or
WRITE RECORD (chan, KEY=string$) strexpr

To read a record:

READ (chan, KEY=string$) iolist
or
READ RECORD (chan, KEY=string$) strvar

To remove a record:

REMOVE (chan, KEY=string$) iolist

Indexed Handling. The following syntax writes to the open file:

WRITE (chan, IND=num) iolist
or
WRITE RECORD (chan, IND=num) strexpr

This will insert records at the specified point in the memory queue file. It will insert
and not overwrite the existing records; if you currently have 5 records in the file and
issue a WRITE (chan,IND=3), the record formerly at index 4 will now be at index 5.

To read a record:

READ (chan, IND=num) iolist
or
READ RECORD (chan, IND=num) strvar

To remove a record:

REMOVE (chan, IND=num)

Accessing Directory Files
Directory files represent the operating system’s directory tables that are used to maintain
the list of files present in the system. ProvideX provides read access to these. When a
directory file is opened, the records read from it contain the names of the files contained
within the directory. The names are not returned in any specific order. The sequence of
the entries within a directory is controlled by the operating system.

Use the INPUT keyword in an OPEN statement to access a disk directory:
0010 OPEN INPUT (1) LWD ! Open current directory
0020 READ (1,END=1000) FL_NAME$! Get file name
0030 PRINT FL_NAME$! Display file name
0040 GOTO 0020
1000 CLOSE (1)
1010 END

Note: ProvideX does not allow the user to write to a directory file and will otherwise
report an Error #13: File access mode invalid.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 113

File Locking - Reserving a File for Exclusive Use
By default, all files accessed by ProvideX are shared between users, allowing any
number of users to access the same file and data at the same time. Due to design aspects
of a file or its contents, it may be desirable to reserve a file for exclusive use. When a file
is reserved for exclusive use only the user who placed the reservation on the file may
have access to its contents. All other users are denied access to the reserved file.

LOCK

A file may be reserved for exclusive use via the LOCK directive. Once reserved, the file is
considered locked. Locking a file can only be accomplished if the user who places the
lock is the only user that currently has the file open. If another user has the file open, the
LOCK request will be denied. Once locked, no other users will be able to open the file.
Any attempt to do so will return Error #0: Record/file busy.

There are two instances when it is necessary to lock a file within ProvideX:

• Writing to a serial file. Due to the nature of a serial file and the format of the data
it contains, it is mandatory that a serial file be locked before attempting to write to
it. Any attempt to write to a serial file without locking it will return an error.

PURGE

• Purging data from a file. The PURGE directive removes all records from a file.
Before this command can be performed the file must be locked in order to assure
that no other user is accessing the file. If the PURGE directive is used on a file that
is not locked, an Error #82: File must be 'LOCKED' before being
'PURGED' will be generated.

ProvideX will automatically lock all physical devices when they are opened. This
will prevent multiple users from attempting to share printers and tape drives at the
same time. An exclusive reservation against a file can be removed by the UNLOCK
directive and is automatically removed when the file is closed.

Record Locking - Sharing Critical Information
Both keyed files and indexed files provide a record locking facility. Record locking
allows the program to gain exclusive access to a record on a file thereby preventing
other programs from incorrectly updating the information.

Typical uses of record locking would be updating a product inventory record or
adjusting an account balance. In general record locking is necessary whenever
modifying a value in a data file. When it is necessary to modify a value the program
should first read and lock the current value, perform the adjustment, then rewrite
the value back. Locking the record will force other users to wait for the update to
complete or until the lock is removed.

The EXTRACT and EXTRACT RECORD directives can be used to lock a record to prevent
other users from having access to it. This lock stays active until the next I/O request for the
same file or until the file is closed. Using a KEY= option on a READ, FIND or EXTRACT
statement to retrieve the next record while a record is locked will result in the locked record
being returned instead. You can enable read through access for records that have been
extracted by setting the 'XI' parameter.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 114

Input/Output Parameters

Within ProvideX, all File Processing Directives (that don't specify RECORD) allow
for the specification of a parameter list. This list can consist of literals, variables,
expressions, and mnemonics. Depending on the type of operation being performed,
some types of parameters cannot be used; e.g., you cannot READ a literal. The
following table describes the parameters each of the file I/O directives will allow:

All of these directives allow for the inclusion of an {ALL} or [ALL] option following a
variable which will cause the system to process all elements of an array (See also
String Arrays and Numeric Arrays, p.37.) Assuming an array of CAT[3,2,1] the
elements in order will be:

CAT[0,0,0], CAT[0,0,1], CAT[0,1,0]
CAT[0,1,1], CAT[0,2,0], CAT[0,2,1]
CAT[1,0,0], CAT[1,0,1], CAT[1,1,0]
CAT[1,1,1], CAT[1,2,0], CAT[1,2,1]
CAT[2,0,0], CAT[2,0,1], CAT[2,1,0]
CAT[2,1,1], CAT[2,2,0], CAT[2,2,1]
CAT[3,0,0], CAT[3,0,1], CAT[3,1,0]
CAT[3,1,1], CAT[3,2,0], CAT[3,2,1]

Common I/O Parameter List (IOList)
In order to simplify and reduce coding, I/O directives allow the use of a common list of
parameters, an IOList. To reference an IOList, the programmer includes the IOL= option
either as the parameter list or within a parameter list of File Processing Directives; e.g.,

IOLis t

0100 READ (1,KEY=K$) IOL=1000
0110 WRITE (1,KEY=K$) IOL=1000

The line reference refers to a line number or label where an IOLIST directive is found:

1000 IOLIST A,D,K(1),F$,F1$

The IOLIST directive is used to define an IOList. An I/O directive may contain as many
IOL= options as required.

PRINT Literals, variables, expressions, and mnemonics are all output to the
file/device.

INPUT Literal and mnemonics are output to the device. Variables are read from
the file/device.

READ Only variables are allowed. (Same for FIND, EXTRACT.)

WRITE Literals, variables, expressions, and mnemonic can be written.

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 115

Defining IOLists on OPEN
Another method to reduce the requirements of providing IOLists on file I/O
statements is to provide the IOLists with the file OPEN directive. If you include the
option IOL= within the OPEN statement, all further READ or WRITE statements
(which do not specify any form of IOList) will automatically use the one given in the
OPEN; e.g.,

IOLIST0010 OPEN(1,IOL=1000) "CSTFLE"

........

0340 READ (1,KEY=K$+"00")

........

0500 WRITE (1,KEY=K$+"00")

........

1000 IOLIST A,D,K(1),F$,F1$

The READ statement at line 0340 and the WRITE statement at line 0500 both will
utilize the IOLIST at line 1000.

Another advantage of this technique is that as long as the file remains open, all
subsequent READ or WRITE statements will use the IOLIST at 1000 even if they are
executed from different programs.

Variable IOLists
ProvideX allows you pass IOLists as variables and use variables as IOLists. In order
to utilize a variable as an IOList, it must first be initialized with the object code for
the desired IOList. This can be accomplished via the CPL() or PGM() functions; e.g.,

0100 IOL_1$=CPL("IOLIST A$,B$,D")

or

0100 IOL_1$=PGM(1000)
1000 IOLIST A$,B$,D

However, due to the fact that a RENUMBER directive could change the line number
of the IOList in the above example, you should use the following piece of logic:

0100 IOL_1$=PGM(TCB(4)+1)
0110 IOLIST A$,B$,D

This uses a TCB(4) function to get the current line number, then adds 1. When this
is passed to the PGM() function, the contents of the next line will be returned, which
should have the desired IOList. This type of coding will not be effected by a
RENUMBER directive.

Once a variable has been loaded with the IOList, it may be specified following the IOL=
option rather than a line number or statement name; e.g.,

READ (1) IOL=IOL_1$

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 116

One of the easiest ways to handle IOLists is to assign them during initialization to
Global Variables, p.35; e.g.,

0100 %CST_IOL$=PGM(TCB(4)+1)
0110 IOLIST CST_NM$,CST_ADR$,CST_CITY$,..

This will allow you to easily change IOLists without having to make large scale program
changes. If desired you could even open the files and assign them global file numbers.

Formatted IOLists
In addition to simply naming the variables to be used in a READ or WRITE directive, an
IOList can also define the exact format of a data record. A format specification may be
given immediately following the variable names on an IOList directive. The format
specification is used to define the exact size and form that the data has on the file record.

Format specifications should be separated from the variable name by a : colon and
enclosed within [] square brackets. The following are currently supported format
specifications:

len and scl are numeric values. dlm is a one-character delimiter. In the following
example, the IOList on line 1000 would be used for a 60 character record, with the
field NAME in positions 1-30 and ADDR1 in positions 31-60:

1000 IOLIST NAME$:[CHR(30)],ADDR1$:[CHR(30)]
1010 IOLIST CUST$:[STR(",")],AMNT:[STR(",")],
1010:DUEDT$:[STR("")]

No delimiter would exist between the fields. In line 1010, the IOList would be used
against a comma-delimited file where the string values would be enclosed in quotes.
Following is another example of the STR(",") IOList formatting option:
0010 dim CSV$[1:3]
0020 CSV$[1]="Fred",CSV$[2]="Wilma",CSV$[3]="Pebbles"
0030 iolist CSV${all}:[str(",")]
0040 print iol=0030
->run
"Fred","Wilma","Pebbles",

CHR(len) Variable length string (fixed output or delimited)
CHR(dlm) Variable length string (delimited)
LEN(len) Fixed length string
STR(dlm) Quoted string
NUM(len,scl) Fixed length numeric
SGN(len,scl) Signed fixed length numeric
BIN(len,scl) Binary numeric
INT(len,scl) Unsigned integer numeric
BCD(len,scl) Packed decimal numeric

Note: Normal unformatted output is equivalent to a format of CHR(SEP).

5. File Handling Processing Data Files

ProvideX User’s Guide V8.30 Back 117

When using the NUM(), SGN(), BIN(), INT(), and BCD() format specifiers, the scl
parameter is used to define the scaling factor to be applied to the numeric data. It
represents the number of implied decimal places that are to exist in the number as it
resides on the file; e.g.,

Prefixing Variables in an IOList via REC=
Sometimes when using common IOLists it is desirable to temporarily override the
variable names. The REC= option provides this capability. When this option is
specified, the variable name which is provided (following the REC=) is used to
prefix all the variables in the IOList; e.g.,

0010 LET GL_FL=HFN; OPEN (GL_FL,IOL=8000) "GLTRAN"
0100 INPUT "Which Credit GL account:",CR$:"AA-0000"
0110 READ (GL_FL,KEY=CR$,REC=CR$,DOM=0100)
0120 INPUT " Debit GL account:",DB$:"AA-0000"
0130 READ (GL_FL,KEY=DB$,REC=DB$,DOM=0120)
0140 INPUT "Amount:",AMNT:"$###,##0.00-"
0150 IF AMNT=0 THEN GOTO 0140
0160 CR.BAL=CR.BAL+AMNT, DB.BAL=DB.BAL+AMNT
0170 WRITE (GL_FL,KEY=CR$,REC=CR$)
0180 WRITE (GL_FL,KEY=DB$,REC=DB$)
0190 GOTO 0100
8000 IOLIST DESC$,BAL

In the above example, the REC= option is used to maintain two separate records in
memory. One record will have all its variables prefixed with "DB.", the other will have
"CR." prefixes.

Embedded Data Dictionary
dat a dictionary

ProvideX allows for a data dictionary to be directly embedded into keyed files making
IOLists within a program unnecessary. To open a file using its embedded IOList use
OPEN (1, IOL=*) "File". From then on, all READ and WRITE statements that do not
specify any IOList or variables will utilize the embedded data dictionary; e.g.,
OPEN (1, IOL=*) "CSTFILE"
...
READ (1,KEY=K$) ! Would use the embedded IOLIST
READ (1,KEY=K$) A$,B$! Would NOT

Value: Format: File Format:
123.45 NUM(8,2) 00012345

1 NUM(8,2) 00000100

-23 NUM(8,2) 00002300

-23 SGN(8,2) 0002300-

1.6 BIN(2,1) 0010

Note: The REC= option may also appear in the OPEN directive.

5. File Handling Embedded I/O Procedures

ProvideX User’s Guide V8.30 Back 118

The IOList can be embedded using the Data Dictionary Maintenance facility.

The REC= clause can be used to prefix the elements in the IOList if desired; e.g.,
OPEN (1,IOL=*) "CTSFILE"
READ (1,REC=CST$)

This would read all the fields defined in the CSTFILE but prefix the fields with "CST".
Optionally the REC= clause can be applied in the OPEN directive causing the IOList to
be prefixed by default.

Embedded I/O Procedures Displaying Controls /Images

Embedded Input/Output (I/O) procedures provide the ability to intercept and
control all file I/O directives and functions using a user-defined program. The
program is called when the file is accessed by an OPEN, READ, FIND, EXTRACT,
WRITE, REMOVE, PURGE, LOCK, UNLOCK, CLOSE, and all KEY(), IND(), RNO()
and FIB()/FID()/FIN() functions. For more information on the various syntax
elements in ProvideX for file operations, see Processing Data Files, p.107.

The program name may be specified in the Data Dictionary Maintenance interface,
which writes it to the embedded data dictionary structure of the file, or it can be
specified using the SETDEV directive on an already open channel. Both Pre and Post
operations are provided for most directives while functions have either a Pre or a
Post operation.

Possible applications for embedded I/O procedures include:

• Security and data encryption (apply passwords and/or encrypt the data)
• Data integrity
• Data replication
• Prevent a customer from being deleted when there is an outstanding balance
• Remove cross-reference information from all files before deleting a customer
• Normalizing data files (re-direct alternate records types to “normal” files).
• Circular file journalizing (maintain a queue of the last nnn # of transactions).

Implementation
Embedded I/O procedures allow the developer to intercept file input and output
operations on a ProvideX keyed data file, or on any channel using the SETDEV
directive. A user-defined program is logically invoked using the PERFORM directive
during use of any of the above-mentioned I/O directives.

In order for the program to be invoked on an OPEN of the file, the name of the
program must be written to the file's internal data dictionary. This is only available for
keyed files, and is done using the ProvideX Data Dictionary Maintenance interface.

5. File Handling Embedded I/O Procedures

ProvideX User’s Guide V8.30 Back 119

The embedded I/O program must exist and be accessible using the standard PREFIX
search rules in order to open the data file. If the program cannot be located, then an
Error #121: Invalid program format is reported and the OPEN will fail.

SETDEV

To use an I/O procedure on any other type of file, a SETDEV directive must be
executed after the channel has been opened. The syntax for the SETDEV directive
appears as follows:

SETDEV(channel) PROGRAM "IOProc"

Where:

channel Channel number to which the I/O procedure program is assigned.

IOProc User-defined program to PERFORM.

Example:

10 OPEN(1)FID(0)
20 SETDEV (1) PROGRAM "ioproc.tst"

To verify that the program can be located, OPEN or ADDR the program prior to
issuing the SETDEV directive to ensure that ProvideX can access it. Another option is
to reference the currently executing program; e.g., SETDEV(1) PROGRAM PGN.

Pre-Defined Entry Points

When file input/output is performed, the user-defined program will be logically
invoked using a PERFORM at the following pre-defined entry points:

For directives:

For functions:

Note: If the specified program is not accessible, an Error #121 is not generated on
execution of the SETDEV directive.

PRE_READ POST_READ

PRE_EXTRACT POST_EXTRACT
PRE_WRITE POST_WRITE
PRE_REMOVE POST_REMOVE
PRE_PURGE POST_PURGE
PRE_LOCK POST_LOCK
PRE_UNLOCK POST_UNLOCK
PRE_CLOSE POST_PASSWORD

PRE_KEY PRE_KEF
PRE_KEL PRE_KEP
PRE_KEC PRE_KEN
PRE_IND PRE_RNO

5. File Handling Embedded I/O Procedures

ProvideX User’s Guide V8.30 Back 120

Additional Notes:

• There is no line label entry point used when a file is opened, as the program is
simply invoked.

• The CLOSE directive only supports the PRE_CLOSE entry point.

• If the entry point for a particular function does not exist, no error will be reported.

• All entry point labels are optional, and ProvideX will only PERFORM the routines
that exist within the program

Execution Environment
The program is invoked logically using the PERFORM directive; therefore, it is
recommended that all variables within the I/O procedure be declared LOCAL. This
will prevent variables referenced in the I/O procedure from conflicting with any
program accessing the file.

Command mode processing is not recommended within an I/O procedure.
Although it may be possible to add an ESCAPE to the I/O procedure to have it drop
to console mode, doing so can produce undesirable results, which could terminate
the ProvideX session.

The I/O procedure can generate an error which in turn will be returned to the
function or directive being executed. Errors may be generated by the I/O procedure
as follows:

EXIT error

Where:

Additional Notes:

• Any error reported by the I/O program is reported as an I/O error on the file.

• While the I/O procedure is executing, any subsequent file access to the same file is
not passed to the file I/O procedure.

• A normal ProvideX PERFORM does not allow an ENTER statement; however, there
is a special ENTER provided for I/O procedures.

The following arguments are passed to the I/O procedure:

ENTER access_mode, key$, index, value$, access_options, keynumber

Where

POST_FIB POST_FIN
POST_FID

error Error number to report back to the directive or function accessing the channel.

access_mode 0-Next, 1-Key, 2-IND=, 3-RNO=.

key$ Value in key$ or null.

5. File Handling Embedded I/O Procedures

ProvideX User’s Guide V8.30 Back 121

All parameters are read-only, and are not supplied for OPEN and CLOSE operations.

If a TIM= clause was specified on the File I/O directive, then the value is reported in
TCB(92).

Changing Return Values
The I/O program can alter the return value using:

RETURN xxx$
-or-
RETURN xxx

A RETURN anything in Pre logic will result in the Post logic not being executed.

Sample Code
0010 ! ENCRYPT - Embedded I/O Procedure to encrypt data
0100 ! ^100
0110 OPEN: ! This label is for informational purposed only, the program
0111 !" execution started at line 10 when the open was performed
0120 LOCAL P$
0130 IF %PASSWORD$="OK" THEN GOTO 0190
0140 PRINT 'WINDOW'(10,10,50,6,"Password?",'MODE'($000F$)+'CS'),
0150 OBTAIN (0,ERR=0160)@(0,1),"Please enter the password? ",P$
0160 PRINT (0,ERR=*NEXT)'POP',
0165 ! Next line is an example of forcing an error to be returned using
0166 ! the EXIT err
0170 IF UCS(P$)<>"PASSWORD" OR CTL<>0 THEN EXIT 52
0180 %PASSWORD$="OK"
0190 EXIT ! end of open routine
0200 ! ^100 " Start of POST_READ routine
0210 POST_READ: LOCAL VALUE$,ACCESS_MODE,KEY$,INDEX,V$
0220 ENTER ACCESS_MODE,KEY$,INDEX,V$

index Value in IND=, RNO=, or KNO= (if KEY= specified).

value$ Record contents for READ/WRITE.

access_options Bit-masked type value indicating the following:
1 - DOM= specified
2 - END= specified
4 - NUL= specified
8 - BSY= specified
16 - FIND directive
32 - EXTRACT directive

keynumber Value of KNO=.

Note: The POST_READ and POST_EXTRACT logic is performed prior to the variables
in the IOList being populated with data. This allows the data in the record to be
modified before it is available for use by the program accessing the file.

5. File Handling File Naming Conventions

ProvideX User’s Guide V8.30 Back 122

0230 VALUE$=V$; GOSUB ENCRYPT_IT; RETURN VALUE$
0240 END ! End of POST_READ routine
0300 ! ^100
0310 PRE_WRITE: LOCAL VALUE$,ACCESS_MODE,KEY$,INDEX,V$
0320 ENTER ACCESS_MODE,KEY$,INDEX,V$
0330 VALUE$=V$; GOSUB ENCRYPT_IT; RETURN VALUE$
0340 END
1000 ! ^1000
1010 ENCRYPT_IT:
1020 LOCAL ENCRYPT_STRING$
1030 IF VALUE$="" THEN RETURN
1040 ENCRYPT_STRING$="Use this string to randomize the data"
1050 ENCRYPT_STRING$=DIM(LEN(VALUE$),ENCRYPT_STRING$)
1060 VALUE$=XOR(VALUE$,ENCRYPT_STRING$)
1070 RETURN

File Naming Conventions
Actually, ProvideX does not impose any naming rules for creating or accessing files.
While some naming conventions (specific prefixes/suffixes) may be required by the
OS or to interact with non-ProvideX applications, ProvideX developers do maintain
full control over how their ProvideX-based files are named.

There are two exceptions: NOMADS defaults to a .EN extension (English) for naming
library files, but this may be changed by the developer. A.PVC extension is used in
Object-Oriented ProvideX to define and/or access a class definition. ProvideX
Search Rules for locating file names are provided later in this section.

Prefix Processing
The ProvideX PREFIX directive allows you to specify up to 10 different prefix strings
to be inserted automatically in front of all file name references; e.g.,

PREFIX

PREFIX [search_string$]

The prefixes are provided as a string to the PREFIX directive using a blank as a
separator character; e.g.,

0010 PREFIX "DATA/ PROGS/"
0020 OPEN (1) "ARDATA"

ARDATA would be searched for first as DATA/ ARDATA, then PROGS/ ARDATA, then as
ARDATA. The first occurrence of a file found with the name specified would be used.

5. File Handling Prefix Processing

ProvideX User’s Guide V8.30 Back 123

The PREFIX directive causes all file creation directives to search for the file using
these prefixes before considering the file as currently non-existent, and proceeding
with the creation. If the file cannot be created in the first directory (permissions
denied or no such directory) it will try to create the file in the next directory.

The system variable PFX and function PFX() will return the current setting of the
PREFIX directive and can be used to extend the PREFIX search rules; e.g.,

0010 PREFIX "TESTDATA/ "+PFX

For syntax details, refer to the PREFIX directive in the Language Reference, p.248.

The use of prefixes should be limited to just one or two at most, with the first entries
being the most likely entries to return the file desired. Since ProvideX will try to
open the file using each prefix until the request is satisfied, much time and I/O
overhead will be wasted if a long list of prefixes is used.

Program Prefix
A special prefix may be defined within ProvideX specifically for use when accessing
programs. Using a program prefix can increase system performance by reducing the
time it takes to locate and load a program. This prefix is defined as follows:

PREFIX PROGRAM [search_string$]

Once a program prefix is defined, it will be the first prefix used for all LOAD, RUN,
CALL, PERFORM, PROGRAM and SAVE directives. After the program prefix has been
searched, any other prefixes will be checked. All other file accesses will search the
other prefixes first, then the program prefix. The current setting of a program prefix
may be obtained via the PFX(PGN) function.

Dynamic Prefix Assignment
In many systems the file names are standardized; i.e., the leading 2 or 3 characters
indicate the subsystem or application that the program/file belongs to. For example
'ARHIST' or 'ARINFO' might belong to the Accounts Receivable subsystem.

The PREFIX directive allows for the automatic separation of these files based on the
first characters. Substituting the = equals sign character in the PREFIX directive
causes ProvideX to take the first character of the file name. Each character of the file
name that corresponds by position to an equals sign will be used to form a
subdirectory name to be used in the search.

For instance, if you include 1 equals sign, ProvideX will interpret that to mean that
the first character of filename$ is also the subdirectory name. If you include 2 equals
signs, it will take the first 2 characters as matching the subdirectory name, and so on.

ProvideX automatically finds the location to retrieve or create files by looking first for a
subdirectory with a name matching, character-for-character, the portion of the filename
that corresponds to the equals signs. This allows you to sort files into subdirectories
based on automated substitution of the first few characters of your filename.

5. File Handling Prefix Processing

ProvideX User’s Guide V8.30 Back 124

Example:

0010 PREFIX "==/"
...
0100 OPEN (1) "ARDATA"
0110 OPEN (2) "CSTDTA"
...
0300 RUN "ARPOST"

The following searches would be performed:

Asterisk Wildcards
You can also use * asterisk and ** double asterisk as wildcard characters to support the
use of filename extensions without modifying your code. With the wildcard
characters, you can rename files on disk with a common file extension without
modifying the program code.

Using * Single Asterisk. If the PREFIX directive includes a single star plus a specified
extension as a filename, ProvideX inserts the filename from your OPEN command in
place of the asterisk and searches for the filename with the added prefix; e.g.,
PREFIX "c:\somedir*.PRG"
OPEN(chan)"FOOFOO"

In the example above, ProvideX scans the disk for "c:\somedir\FOOFOO.PRG"
and opens that file if found. If FOOFOO.PRG is not found, ProvideX attempts to find
and open a file named "FOOFOO". If the filename in the OPEN command already
includes an extension, no substitution will occur; e.g.,

PREFIX "c:\somedir*.PRG"
OPEN(nahc)"MyFile.Dat"

In this case, ProvideX does not add the .PRG extension when it executes the search
to find and open MyFile.Dat.

Using ** Double Asterisk. If the PREFIX directive includes two stars plus a specified
extension, ProvideX inserts the filename from your OPEN command in place of the
asterisks and searches first for the filename with the extension specified in the prefix; e.g.,

PREFIX "c:\somedir**.PRG"
OPEN(chan)"FOOFOO"

In the example above, ProvideX scans the disk for "c:\somedir\FOOFOO.PRG"
and opens that file if found. If FOOFOO.PRG is not found, ProvideX attempts to find
and open a file named "FOOFOO".

File: 1st search: 2nd search:
ARDATA AR/ARDATA ARDATA

CSTDTA CS/CSTDTA CSTDTA

ARPOST AR/ARPOST ARPOST

5. File Handling Prefix Processing

ProvideX User’s Guide V8.30 Back 125

If the filename in the OPEN command already includes an extension, Providex adds
the additional extension specified by the PREFIX directive when it searches for the
filename; e.g.,

PREFIX "c:\somedir**.PRG"
OPEN(chan)"FOOFOO.PRG"

In this case, ProvideX scans for "c:\somedir\FOOFOO.PRG.PRG". However, if
FOOFOO.PRG.PRG is not found, ProvideX attempts to find and open a file named
"FOOFOO.PRG".

Prefix File
You can use the prefix file to do dynamic translations of file names using a Keyed
file as a lookup table. The prefix file consists of a file name (which is the key) and a
data portion that contains two fields (the path to the file and the options field used in
the OPT= clause in OPEN). Prefix files must be variable length. The following
example creates the prefix file:

KEYED "PVX_PFXF",15

The following sets search rules using the prefix file:

PREFIX FILE "PVX_PFXF"

ProvideX Search Rules

The ProvideX default is to search all prefixes, in the following order:

The PREFIX search rules apply not only to files being found, but also to files being
created. ProvideX creates files in the first location that is permitted by the PREFIX
rules. If 'CD' (Search Current Directory) is on, then all files are created in the current
directory (the first permitted location). If the 'CD' system parameter is off, then
ProvideX creates the file in the first location permitted by the search rules above. For
syntax details, refer to the 'CD' parameter in the Language Reference, p.656. Windows
search rules are used to find DLLs (i.e., not PREFIX search rules or current directory).

OPEN Directive LOAD/RUN/CALL/PERFORM/SAVE Directives

1. PREFIX FILE, if set; replaces
pathname then continues
sequence.

2. Current Directory; if 'CD' system
parameter is set.

3. PREFIX 0 to 9.

4. PREFIX PROGRAM, if set.

5. Current Directory; if 'CD' system
parameter not set.

1. PREFIX FILE, if set; replaces pathname
then continues sequence.

2. Program Cache.

3. Current Directory; if 'CD' system
parameter is set.

4. PREFIX PROGRAM if set.

5. PREFIX 0 to 9

6. Current Directory; if 'CD' system
parameter not set.

5. File Handling Foreign File Access

ProvideX User’s Guide V8.30 Back 126

Use the ENABLE and DISABLE directives to control which of the numbered prefixes
ProvideX will use in the search. (While scanning prefixes 0 to 9, ProvideX ignores
any prefix that is disabled.)

The initial check for PROGRAM cache checks for a match against the original
filenames. If you used CALL "ABCD" and you had previously loaded a program with
the same name, ProvideX would use the one in cache. This eliminates the directory
searches involved, but if you have duplicate program names in your system, it is
possible to get the wrong one; i.e., if you CALL "ABCD", change the directory /
prefix, then re-CALL "ABCD". If this happens for duplicate program names in your
system, either clear the cache or do not use it.

For syntax details, see DISABLE and ENABLE in the Language Reference, p.91.

Foreign File Access
ProvideX has the ability to read and write native OS serial files (sometimes referred to as
flat files) for easy transfer of information from other applications. It also has the ability to
access any data file regardless of the file format.

The special OPEN file option ISZ= allows a file to be accessed as if it was a Indexed file,
specifying a logical indexed record size. This means that the file’s contents can be read or
written directly. Once the file has been opened (with ISZ= set) read and write statements
can be issued against it. Optionally, the user can specify the record index via the IND=
option to access specific areas of the file directly. The size specified via the ISZ= option is
considered the record size for each record in the file. A record index specified on a file
read or write directive with a IND= option determines where in the file (at what record
index) the I/O function is to be performed.

Use of ISZ=1 on an OPEN provides direct access to a file on a byte-by-byte basis.
Whatever is specified on the IND= clause identifies the actual byte within the file. The
SIZ= clause can be used on the READ or WRITE to define the amount of data to transfer.

Example:
0010 OPEN (1,ISZ=100) "CUSTDB"
0020 FOR I = 0 TO 49
0030 READ RECORD (1,IND=I,ERR=0060) R$
0040 PRINT HTA(R$)
0050 NEXT I
0060 END

In the preceding example, the file CUSTDB is opened with an ISZ=100; i.e., the disk
space occupied by the file is to be considered as a series of 100 byte records. The
FOR..NEXT loop then reads the first 50 records (bytes 0 through 5000) and prints them in
Hex via the HTA() function. Record index zero (0) in the preceding example would
consist of bytes 1 through 100. Index one (1) would be bytes 101 through 200, and so on.

5. File Handling Views System

ProvideX User’s Guide V8.30 Back 127

One of the main reasons for accessing files via the ISZ= option is to read and/or update
databases or other files maintained by other applications such as word processors,
spread sheets, etc. Another reason may be to provide direct access to disk contents in
order to correct a error which may have occurred on a file.

Other options for storing and retrieving external data are discussed in Chapter 10.
Data Integration.

Views System
ProvideX Views offer a more intuitive way to look at data and how it inter-relates. They
give developers the ability to define logical representations of data sources that are
relevant and more accessible to the end-user: i.e.,

• Provide only the data items you need to see.

• Assign more meaningful names to data items.

• Create virtual fields from exisiting data.

• Combine elements from different sources.

The ProvideX Views System provides a simplified interface that allows you to create a
hierarchical view of the related tables and fields that is much easier for the end-user to
understand. It includes built-in filters that let you define a dataset to retrieve just the
records you need and to organize the data into meaningful groups.

Views can be accessed through the View object, the ProvideX Report Writer, and the
ODBC driver. Use of this product may require a separately-purchased activation key
apart from your initial ProvideX activation. Contact your local ProvideX
dealer/distributor or visit www.pvx.com for product information and licensing.

For complete documentation, refer to the ProvideX Views manual.

Warning: Use the ISZ= feature carefully, as there is no attempt by ProvideX to verify
the data you are writing is correct for the type of file being updated. It is possible to
accidentally corrupt data if you update the file with the wrong data.

5. File Handling Views System

ProvideX User’s Guide V8.30 Back 128

ProvideX User’s Guide V8.30 Back 129

User’s Guide 6
 Graphical User Interfaces

The graphical user interface (GUI) of your application may be one of its most crucial
aspects (at least from the user’s perspective) and ProvideX has the all tools necessary
to adapt and incorporate powerful, effective GUI functionality. This includes the
development of panels (windows or forms), menus, toolbars, buttons, radio buttons,
checkboxes, list boxes, and scrollbars—just to name a few. It also has the flexibility to
take your GUI application beyond the Windows environment.

This chapter leads you through the basics of GUI programming in ProvideX, the
creation of a GUI window, the creation of the graphical components to be used
within that window.

Concepts and Terminology, p.130
Interface Windows, p.138
Control Objects, p.150
Taskbar Notification Icon, p.197
Display Objects, p.201
Example Programs, p.208
NOMADS, p.212

Background
A GUI application is designed so that the user is able to interact with the software in
a manner similar to the physical manipulations in the real world. For example, in a
typical "windowing" operating system, files are represented by a file icons (tiny
pictures with a descriptive label). Data in a file can be moved to a new location by
simply moving the icon via the mouse pointer. Behind-the-scenes, this physical
interaction is translated into commands sent automatically to the application.

In ProvideX, the reusable GUI tools (menus, buttons, toolbars, check buttons, text
entry boxes, and so on) are called Graphical Controls, p.134. In order to respond to
user input, a program needs to lay out various controls within the application
window, and set functions to be called when the user performs actions like selecting
a menu item or clicking on a button.

Topics

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 130

Concepts and Terminology
GUI development is just like other types of programming, except for the following:

First, GUIs are almost exclusively event driven by nature, which means they perform
tasks in response to events. A GUI spends most of the time in an idle state waiting
for the operating system to send an event that can arrive in the form of a user action
(clicking a mouse) or an operation invoked by the OS itself (screen refresh). For more
on this topic, see Event-Driven Methodology, p.131.

Second, most modern GUIs are designed and built within an IDE (integrated
development environment). While it is quite feasible to build all your GUI objects
programatically in the ProvideX language (see Syntax Elements, p.135), most
developers find it easier to design and implement their GUI applications using an
application that is itself GUI-based; i.e., in NOMADS, p.212.

This section discusses some of the general concepts in ProvideX GUI development. How
to create and implement specific GUI components will be covered later in the chapter.

GUI Terminology, p.130
Event-Driven Methodology, p.131
General Design Principles, p.132
GUI Development in ProvideX, p.133
Syntax Elements, p.135

GUI Terminology

The following terms are used in the context of ProvideX GUI development.

Topics

Control A control is a graphical object used for "controlling" the application in
a GUI environment. Controls have properties and generate events.
Typical controls include buttons, list boxes, grids, menus, scrollbars,
folders, etc. See Graphical Controls, p.134.

CTL Value When controls are created, they are assigned a unique CTL identifier.
(ctl_id). This value is used by a GUI program to determine what
actions have been performed by the user or operating system. See CTL
Values, p.136

Dialogue Typically, a dialogue box is an independent (popup) window object
that is used to request information from the user or to supply
information the user may need. See Window Categories, p.138

Event In GUI programming, an event is the reporting of an action generated
by the user (or the GUI operating system itself) to which a program
might respond. Examples of events include a mouse click, keystroke,
focus change. See Event-Driven Methodology, p.131.

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 131

Event-Driven Methodology

This is one of the most significant concepts in GUI programming. Whereas a typical
batch program runs all of its operations in a linear fashion from start to finish, an
interactive user interface must be designed to run its operations in a fairly random
order. This behavior is expected by users and is nearly impossible to implement
without being "event driven".

The general criteria for designing a GUI application in ProvideX can be broken down
into the distinct implementation stages, as outlined below.

Separate the User Interface from the Data Processing. There are several advantages
to partitioning an application into GUI and non-GUI components – one being that it
is much easier to maintain platform independence when building a
distributed/server-based system. For more information on this topic, refer to the
ProvideX Client-Server Reference. GUI generators (such as the NOMADS toolkit)
can help accomplish this.

Determine User Actions. How will the interface allow the user to carry out these
actions? Which steps are required by the user to exercise all the necessary
functionality?

Determine Events. Determine which events in your code will need to be triggered
when each action is taken. A typical GUI is input/output intensive. Each event may
be generated by input from the keyboard, the mouse and system devices (e.g.,
menus, buttons, and scroll bars) and can occur in any order and at any time.

Mnemonic ProvideX syntax element used to control an application window in a
in GUI application. See Graphical Mnemonics, p.135.

NOMADS Completely GUI-based development environment that simplifies the
building and implementation of graphical applications in ProvideX.
See NOMADS, p.212.

Panel In ProvideX, a panel is the primary display area that is under the control
of an application at run time. It provides the layout for controls required
by the user to interact with an application. Some GUI environments refer
to this as the application window. See Window Categories, p.138.

Property A property is a named attribute of a graphical control object in ProvideX.
Each control may be referenced and modified dynamically using it’s
assigned CTL value followed by the apostrophe operator (tick) and
property name. See Dynamic Control Properties, p.137.

Window A window is the generic term for a rectangular display object that
presents its contents (e.g., controls, information, images, etc.)
seemingly independent of the rest of the GUI operating system. See
Interface Windows, p.138.

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 132

Organize Events. For more complex behavior, it may be useful to map GUI events
visually using a state-transition diagram or table. This would illustrate the various
states of an object, the events that cause a transition from one state to another, and
the actions that result from a transition.

Associate Events with GUI Controls. Focus for (mouse and keyboard) input events
is usually associated with the top window in a GUI desktop. Overlapping windows
are hierarchically ordered. Events generated by child windows are frequently
delivered up the window hierarchy for handling. See CTL Values, p.136.

The events can be dispatched in several ways. They can be asynchronously sent to
controls as messages. Controls or logic can poll queues or devices. Controls may register
a callback, a pointer to a function for handling each event – the window manager invokes
the functionality whenever the specified event type occurs.

 General Design Principles

Although the functionality of your application is important, the way in which it
delivers that functionality may be more important to your users. ProvideX includes
several tools for performing similar GUI tasks, some may be better suited to your
user’s requirements than others. But how do you make the right usability choices in
your design? The sections below outline some basic guidelines for designing a usable
graphical user interface.

Know Your Users. Developing any user interface requires careful thought about how
your users intend to use it. One excellent way to verify your design choices is to test
your interface with potential users.

Ensure Consistency. Whether they are arbitrary, precisely task-oriented, or follow an
OS standard, the "rules" behind a graphical element should be readily perceived by
the intended user. Put your buttons in consistent places on all your windows, use the
same wording in labels and messages, and use a consistent color scheme throughout.

Provide Clear Labeling. Assist navigation by providing good textual clues on or near
each graphical control. The interface may be "graphical", but most users recognize words
faster than they recognize icons, especially first-timers. Terminology should be defined
so that the same term always has the same meaning anywhere in the application.

Use Feature Layering and Navigation Mechanisms. Crowded panels can overwhelm
users with extraneous details. Most people would prefer to see only the important
features exposed at any time, saving advanced or peripheral functionality until it is
actually needed. Provide clear and easy routes between the different panels users
will need to for accessing particular tasks. By convention, certain graphical
components are designed specifically for feature layering; i.e., menus, toolbars, tabs
and dialogues.

Note: The activities described above emphasize the event-driven aspects of GUI
development. Designing a GUI tends to be an incremental process. However, in practice,
these steps may proceed concurrently and in a different order.

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 133

Apply Redundancy. Offer alternate methods to perform common tasks. While it is
important to build on a familiar look and feel, the GUI should not trap users into a
single linear path to everything in the application. As users learn the steps within the
larger process, the seemingly "helpful" aspects of your interface may actually work
against its usability. By providing several access methods (menu items, toolbar icons,
and quick key sequences) you allow users to control their own productivity.

Expect Mistakes, Allow for "Undo". Give users a clean way out of a confusing
(possibly destructive) situation. When a GUI provides navigation that is easily
reversible, new users will feel much more confident about exploring the capabilities
of your application. Of course the best remedy is to also include an undo or cancel
option. This way, if users reach a point where they’ve made some serious mistakes,
they could simply go back to their earlier work.

User-Centered Design - Resources
The above guidelines are not 'hard-and-fast' rules and can apply to a variety of interface
applications. There are plenty of good detailed resources out there on the principles of
high-level interface design. Check the internet for titles specific to the design of usable
interfaces; i.e., web applications, mobile devices, and traditional desktop GUIs.

GUI Development in ProvideX
Not only does ProvideX offer complete GUI functionality, it is easily adapted for
building graphical components on top of existing (non-GUI) programs. ProvideX is
flexible, in that it allows more than one approach to GUI development. You also have the
option to create and position controls programmatically or to use the visual, interactive
building blocks provided under NOMADS, p.212.

Depending on your situation, there are four approaches to the development and
implementation of GUI-based applications in ProvideX:

1. Retrofit GUI functionality into an existing program by introducing graphical
Syntax Elements, p.135 (directives, properties, etc.). With this approach, the onus
is on the ProvideX developer to create the necessary control objects and trap
events. The conditional logic will presumably already be in the existing code, so
this portion of the development has been completed.

2. Construct your GUI application from the start using all the necessary graphical
Syntax Elements, events, etc.

3. Employ the NOMADS toolkit to create and implement the desktop GUI. This
development environment provides a fast visually-oriented framework for
creating panels, populating them with GUI controls, and then associating
event-driven code with these controls (pointing to logic in the already written
program).

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 134

4. Develop your GUI at the file or database level. Using NOMADS, you can define
the database or files, apply all the controlling data to each field, and then use
screen generation facilities (Dictionary-Based Development) to automatically
create parts of the application based on these file specifications.

Windowing Environment
Coding a GUI application begins with the implementation of an Interface Window.
This is the interactive display area that is under the control of your ProvideX GUI
application when running in a graphical operating system; i.e., MS Windows. It also
defines the layout for the controls required by the user to interact with your
application. ProvideX uses special GUI mnemonics for the creation and management
of windows and dialogues. Multiple windows may be opened and closed at runtime.

Graphical Controls
These are the objects that can be manipulated by the user within the window. They
provide different methods for displaying information, inputting data, and handling
event processing within an application window. ProvideX supports a full range of
Graphical Directives for creating and maintaining various Control Objects, p.150.
Interactive properties are identified via CTL Values, which generate specific events
in your application at runtime. Various Control Options allow you to define the
initial appearance and functionality of each control when it is first created. Once they
are created, controls may be further modified via Dynamic Control Properties,
p.137.

Graphical Objects
Other graphical object types are used to produce images and text, or define the
layout of your application. These are output on the graphic plane using Graphical
Mnemonics via the PRINT directive, and have no events associated with them.

Object Focus
A key concept in ProvideX GUI programming is the handling of focus, the condition
where a window or control object has the exclusive ability to receive input via
keyboard or mouse actions.

One simple example of focus is when an input-capable field shows that it has the cursor
– this means that the field holds focus and is ready to receive the next input from the
keyboard. In a windowing environment, several windows may be visible at the same
time but usually only one has focus to accept and display user input. The focused
window is usually positioned on the top of the stack, overlapping other non-focused
windows. (However, NOMADS can be set to allow multiple active windows.)

There are several ways that focus can be enabled in ProvideX; i.e.,

• Upon creation of an control object or window.
• When an object is selected by the user (mouse or keyboard) at runtime.
• SET_FOCUS directive (forcing transfer to a control object).

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 135

• 'GOTO' or 'WG' mnemonic (forcing transfer to a window).
Focus is also used in event handling; i.e., certain (get focus, lose focus) events can be
associated with GUI objects to generate a CTL value for triggering application logic.

Portable User Interfaces
ProvideX supports Windows, Java, and browser access to ProvideX GUI applications
running on UNIX, Linux, Mac OS X, or Windows. ProvideX syntax elements for GUI
development were originally designed for a Windows-only environment and were
added to the language back when there were few other options. However, with the
availability of ProvideX products such as WindX, JavX and UltraFX, it is now
feasible to build a high-quality GUI in ProvideX that is truly OS (and device)
independent. For a discussion on the full range of ProvideX multi-platform options,
see Chapter 8. Client-Server.

Syntax Elements
The ProvideX language includes a variety of commands for creating GUI windows,
controls and other display components – the basic building blocks used in the
creation of a GUI application. This section provides an overview of the syntax
elements (Graphical Directives, Graphical Mnemonics, CTL Values, Control
Options, and Dynamic Control Properties) used to develop GUI applications at the
language-level. If you prefer a graphical approach to GUI development, where the
underlying code is generated for you automatically, look into NOMADS, p.212.

Graphical Directives
ProvideX supports a full range of directives for creating and maintaining various
control objects in a GUI application: BUTTON, CHART, CHECK_BOX, DROP_BOX,
GRID, LIST_BOX, MULTI_LINE, RADIO_BUTTON, TRISTATE_BOX, VARDROP_BOX,
VARLIST_BOX, V_SCROLLBAR, and H_SCROLLBAR. For descriptions and examples
on the use of these types of directives, see Control Objects, p.150.

Other GUI directives include GET_FILE_BOX, for generating a standard
files/directory selection box, and MSGBOX, for launching a popup message box.
These are discussed in the section Special Function Windows, p.146.

Graphical Mnemonics
Generating non-interactive graphical output from a ProvideX application requires
the use of mnemonics, such as 'TEXT', 'FONT', 'PICTURE', 'ARC', 'PIE', 'CIRCLE', 'LINE',
'POLYGON', 'RECTANGLE', and 'IMAGE'. Mnemonics are inserted within a PRINT
statement to draw these types of components on the graphical plane. For
descriptions and examples, see Display Objects, p.201

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 136

CTL Values
When each graphical control object is created, it is assigned a unique CTL value (ctl_id)
which is returned when an action has been performed on the control. Your program
processes this value to discover what actions have been performed by the user. CTL values
are also used to identify the control for assigning Dynamic Control Properties, p.137.

CTL values can signal various events, including:

• Button pushed
• Menu/tool bar items selected
• Scroll bars adjusted
• List/drop boxes selected, edited.

These events are sent to the program to deal with one at a time. Eventually the user
will perform an action that terminates the program. For further information, see
Event-Driven Methodology, p.131, and Submitting Input (CTL Values), p.92.

Control Options
ctrlopt

Several options (ctrlopt) are available for use in GUI directives to specify format
type, customize appearance, and define the behavior of graphical objects. These are
outlined below. For information on how these are used, see Control Objects, p.150.

ERR=stmtref Defines program line number/line label for on-error
transfer. Can be used with any directive.

HLP=string$ Help message identifier for defining AutoComplete and
Calendar functionality in a Multi-Line control.

FNT="font,size[,attr]" Sets font name, size, and optional attributes for control
object directives that support text.

FMT=def$|mask$ Specifies the format definition (def$) in directives used to
create different styles of Chart, Grid, and List Box
controls. Used for character string mask$ in a Multi-Line.

KEY=char$ Defines hot key character in a Drop Box, List Box,
Multi-Line, Variable Drop Box, and Variable List Box.

LEN=num Defines maximum number of input characters allowed in
a Multi-Line, Variable Drop Box, and Variable List Box.

MSG=text$ Supplies the text that is to appear on the message line
when the control object has focus.

MNU=ctl Assigns ctl value to be associated with a right-click Popup
Menu event for when the mouse pointer is positioned
over the GUI control object.

NUL=string$ Defines the null field display value in a Multi-Line control.
OWN=name$ Name assigned to a control for automated testing

purposes. This will be visible to programs that use the
Microsoft Active Accessibility (MSAA) interface. Refer to
documentation on ProvideX GUI Testing Automation.

6. Graphical User Interfaces Concepts and Terminology

ProvideX User’s Guide V8.30 Back 137

Dynamic Control Properties
GUI control objects have a variety of properties associated with them. The
apostrophe operator (tick) allows dynamic access to the property names used to
define these attributes for a given GUI control. Any numeric variable containing the
CTL number associated with a control can be used with the apostrophe operator.
This feature allows you to redesign a control object dynamically in your application
by assigning or resetting its properties/attributes.

For example, a button’s location, size, text, and colour would be represented by
properties named Col, Line, Text$, TextColour$, etc. You could change the text of a
button control (called MyButton) as follows:

MyButton.ctl'Text$ = "Hit me now"

Other common property names include:

'Col Starting Column
'Line Starting line
'Cols Width of control
'Lines Height of control
'Tip$ Tip message
'Msg$ Message line
'Fmt$ Format mask
'BackColour$ Background colour
'Enabled Enabled State
'Lock Locked State
'Value$ Current value/state of control.

To obtain a complete list of properties for a given control, read the logical attribute *; e.g.,

X=100
PRINT X'*

This results in a list of the attributes for the control defined with a CTL value of 100.

OPT=char$ Applies single character attribute/behaviour settings.
Some characters may be combined; e.g., the combination
OPT="VUTf" on a button creates an HTML-style hotspot.

SEP=char$ Sets the input line or column separator for Chart, Grid,
List Box, and Multi-Line controls. Hex or ASCII value; e.g.,
SEP=":" or SEP=$3A$...

TBL=char$ Table of single character values to represent the displayed
options. The 1st character represents the first entry, etc....

TIP=text$ Provides text to be used as the floating tip message when
the mouse pointer hovers over the control.

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 138

There is virtually no end to what can be changed on the fly within your controls.
Most control commands can be changed by accessing attributes. For more
information on dynamic properties and the apostrophe operator, see Control Object
Properties in the Language Reference, p.699.

Interface Windows Int erf ace Window

An interface window is an area that is under the control of your application when
running in a graphical operating system. Within a typical "windowing" environment,
there can be a variety of window types, each displaying certain characteristics with a
unique purpose for interacting with your application. The ProvideX syntax for
implementing the different window formats is covered in this section.

ProvideX Console Window, p.138
Dialogue Window, p.140
Child Window, p.141
Handling Multiple Windows, p.144
Special Function Windows, p.146

There are as many ways to invoke a ProvideX GUI application as there are
windowing formats. One key rule to remember about creating a ProvideX GUI, is
that ProvideX must be running in order to execute the application – that includes the
primary application window (whether inside or outside the ProvideX console).

Window Categories
windowIn this documentation, the terms panel, dialogue, and form may be used to identify

the functionally of different interface windows. While each windowing environment
has its own rules and terminology, ProvideX window types generally fall within the
categories described in the sections below.

ProvideX Console Window

As described in Chapter 1. Getting Started, the ProvideX environment under MS
Windows, is itself invoked within a GUI window. Some applications may be
designed to appropriate this window directly (the ProvideX console populated with
various control objects) as the primary window for the application. The NOMADS
toolset is itself an example of how an application would use the ProvideX console in
this context.

Warning: NOMADS stores the current value of a control in a variable with the same
name as the control. If you change a control value using the ’Value$ property, you must
also change the control’s variable to keep NOMADS in sync.

Topics

Note: For more information on creating the objects that make up the contents of an
interface window, see Control Objects, p.150, and Display Objects, p.201.

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 139

The characteristics of the ProvideX console window are as follows:

• Free-standing window that can be moved, resized, minimized, maximized and
restored.

• Accessible workspace is not resizable after creation, leaving a gray area
surrounding it when the window is enlarged.

• Title bar to display application name.

• Displays PVX icon at the top left corner of the window which controls
session-related actions/characteristics.

• Supports optional menu, tool and status bars, including global menus and buttons.

• Supports creation of dependent windows in a parent-child relationship (See Child
Window below).

• Has an icon in the Windows task bar.

Due to the static nature of the workspace area presented by the console window, or
to take advantage of the more flexible display options offered by the dialogue
window, many developers may prefer to launch a dialogue window for their main
application window, either hiding the ProvideX console completely or using it only
as a launch/login screen during the initial startup of their ProvideX application. (See
Dialogue Window, below).

Note: Use the -HD command line option to hide the console at ProvideX startup. See
Launching ProvideX in the Installation and Configuration guide To hide the console
once your application is running, use the mnemonic 'SHOW'(-1).

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 140

Dialogue Window

A dialogue window is a free-standing independent window.

Following are the characteristics of a dialogue window:

• Free-standing window that can be moved and optionally resized, minimized,
maximized and restored.

• Optional title bar to display application name.

• Accessible workspace area is resized when the window is resized.

• Optionally displays PVX icon at the top left corner of the window which controls
session-related actions/characteristics.

• Supports optional menu and status bars.

• Does not support global menus and buttons.

• Supports the creation of dependent windows in a parent-child relationship (See
Child Windows below).

• Entry in the Windows task bar.

Creating a Dialogue
' DIALOGU E'

A dialogue window is created by inserting the 'DIALOGUE' mnemonic within a
PRINT statement; e.g.,

PRINT 'DIALOGUE'(0,0,60,10,"Sample",'WHITE'+'_BLUE',OPT="-mMSXZ")

When creating a dialogue, the size and position of the window is defined via four
coordinates. The first pair of numbers establishes the upper left starting position of
the window (column and line coordinates). These are absolute values relative to the
top left corner of the monitor screen. The third number indicates the window width
(in columns) and the fourth is the window height (in lines). All are integer values.

Following the title you may also specify an optional default attribute string for the
window. This string is comprised of one or more mnemonics, such as
foreground/background colours.

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 141

The many options that are available in the OPT= clause make this a very flexible
display window. The menu and status bars are optional, as are the icons and resizing
boxes in the title bar. Even the title bar is optional. For details on the syntax and
options for this mnemonic, see 'DIALOGUE' in the Language Reference, p.598.

Example Dialogues
The following code creates the dialogue window shown on the previous page, with
the title Sample:

PRINT 'DIALOGUE'(0,0,60,10,"Sample",'WHITE'+'_BLUE',OPT="-mMSXZ"), \
'SR','CS',

PRINT 'MESSAGE'("This is the status bar where you can display messages"),
MENU_BAR 100,"-[&File,&Edit,E&xit],F:[&Open,&Close],E:[&Cut,&Paste]"
BUTTON 101,@(50,8,8,1.6)="E&xit"
PRINT 'FONT'("Arial,2,IB"),'TEXT'(@X(2),@Y(2),"Welcome!"),

Blue is set as the default foreground colour by specifying it as an attribute of the
window. The options set in the OPT= clause include minimize and maximize
buttons, menu and status bars, and will create a resizable window. By default, only
one window is active at any time. ProvideX allows the creation of multiple active
windows by specifying OPT="&". This creates a window that logically attaches to
the current windows. See Handling Multiple Windows, p.144.

When a dialogue is created, the default scroll area leaves a column free on each side
of the window and a line at the top and bottom. To reset the scroll region so that it
extends to the edges of the window, use the 'SR' mnemonic.

The following code centres a dialogue on the monitor screen:

panelWidth=40,panelHeight=10
x$=MSE ! use to determine max columns/rows on monitor
charWidth=DEC(00+x$(10,1))
charHeight=DEC(00+x$(11,1))
screenCols=INT(DEC(x$(27,2))/charWidth)
screenRows=INT(DEC(x$(29,2))/charHeight)
c=INT(screenCols/2-(panelWidth/2))
l=INT(screenRows/2-(panelHeight/2))
PRINT 'DIALOGUE'(c,l,panelWidth,panelHeight,"Title"),'SR','CS',

Child Window

A child window is a window that is launched and contained inside of a parent
window. By definition, a child window is one that is dependent on a parent window
and is minimized or closed when the parent minimizes or closes. These windows
usually share the main application menu bar and can only be moved or resized
within the parent window. If you attempt to move a child window beyond the

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 142

primary window frame, any part that is outside of the frame is no longer visible. A
child can be any window launched by another window (including one that is itself a
child window).

The characteristics of a child window are as follows:

• Totally contained within the parent window

• Minimized/restored when the parent window is minimize/restored

• Closed when the parent window is closed

• When minimized, they are identified as icons within the parent window

• Supports global menu and buttons created on the parent window

• Does not have an entry in the Windows task bar.

Creating a Child Window
A child window is created by inserting the 'WINDOW' or 'WA' mnemonic within a
PRINT statement; e.g.,

PRINT 'WINDOW'(0,2,60,10,"Sample",'WHITE'+'_BLUE',OPT="-mMSX")

When creating a child window, the size and position of the window is defined via
four coordinates. The first pair of numbers establishes the upper left starting position
of the window (column and line coordinates). These values are relative to the top left
corner of the parent window. In the case of the console window, line 0 begins at the
top of the tool bar area, so the line coordinate must compensate for this. The third
number indicates the window width (in columns) and the fourth is the window
height (in lines). All are integer values.

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 143

Following the title you may also specify an optional default attribute string for the
window. This string is comprised of one or more mnemonics, such as
foreground/background colours.

There are a variety of options for the OPT= clause, although fewer than for the
'DIALOGUE' mnemonic. The status bar is optional, as are the icons and resizing boxes
in the title bar. You must include a title when using the 'WINDOW' mnemonic if you
want a title bar and borders. When creating a child window to a ProvideX Console
Window parent, the OPT="c" option is not necessary. This option must, however, be
used to create a child launched from a Dialogue Window or another child window.
For details on the syntax and options for this mnemonic, see 'WINDOW' or 'WA' in
the Language Reference, p.645.

Example Child Windows
The following code creates the child window shown on the previous page, with the
title Sample:

PRINT 'WINDOW'(20,16,60,10,"Sample",'WHITE'+'_BLUE',OPT="-mMSXZ"), \
'SR','CS',

PRINT 'MESSAGE'("This is the status bar where you can display messages"),
MENU_BAR 100,"-[&File,&Edit,E&xit],F:[&Open,&Close],E:[&Cut,&Paste]"
BUTTON 101,@(50,8,8,1.6)="E&xit"
PRINT 'FONT'("Arial,2,IB"),'TEXT'(@X(2),@Y(2),"Welcome!"),

Blue is set as the default foreground colour by specifying it as an attribute of the
window. The options set in the OPT= clause include minimize and maximize buttons
the PVX system icon, menu and status bars, and create a resizable window.

When a child window is created, the default scroll area leaves a column free on each
side of the window and a line at the top and bottom. To reset the scroll region so that
it extends to the edges of the window, use the 'SR' mnemonic.

The next example centres a child window in the workspace area of the parent
window:

childWidth=40,childHeight=10
parentCols=MXC(0),parentRows=MXL(0)
c=INT(parentCols/2-childWidth/2)
l=INT(parentRows/2-childHeight/2)
PRINT 'WINDOW'(c,l,childWidth,childHeight,"Title"),'SR','CS',

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 144

The parent-child relationship may also be extended to a window created outside of
the window that launched it. This is accomplished by creating the child window
using the 'DIALOGUE' mnemonic and specifying the OPT="c" option. While this
type of window is not confined to the borders of its parent, it is nonetheless a child
that is dependent on its parent, so the same rules apply.

Handling Multiple Windows

There are several options available for controlling how windows objects are
arranged in your GUI application for viewing and input access.

Controlling Display
The 'SHOW'(n) mnemonic can be used to minimize, maximize, and restore the
display of specific windows programmatically. Code values for n include
0=Minimize current window, 1=Restore current window to normal display state,
2=Maximize current window, 3=Resize current window to previous display state,
-1=Hide current window. The 'SIZE' and 'MOVE' mnemonics can also be used to
control the size and location of the window.

Transferring Focus
If multiple windows/dialogues are to be displayed at the same time within your
GUI application, there are two different methods available to you for switching focus
from one window to another (without having to hide /drop one of the windows).
These are described below.

Method 1. The ProvideX language handles window focus via the 'GOTO' or 'WG'
mnemonic.

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 145

Using the 'GOTO' mnemonic requires the pre-requisite that a unique window ID be
assigned to all windows upon creation; e.g.,

LET WindowNumOne=HWN(0)
PRINT ‘DIALOGUE’(10,2,40,10,WindowNumOne,"NumberOne

Window",OPT="cSX*"),’CS’,’SB’,
LET WindowNumTwo=HWN(0)
PRINT ‘DIALOGUE’(41,2,40,10,WindowNumTwo,"NumberTwo

Window",OPT="cSX*"),’CS’,’SB’,

In this example, HWN() is used to supply the highest unused window number
available. A 'GOTO' would now be able to transfer focus to either of these windows
by specifying one of the window IDs assigned; i.e., WindowNumOne or WindowNumTwo.

Method 2. The ProvideX *WINAPI utility can be used to switch focus between windows
in your application. This method requires the pre-requisite that a unique window title be
assigned to all windows upon creation. This is a two step process:

First, *WINAPI is used to retrieve the system ID (handle) associated with the title
assigned to the window; e.g.,

Title$="WindowNumOne"
CALL "*WINAPI;FindWindowA",Title$,HANDLE

Once the handle has been established, you can use this value to position the selected
window to the foreground (transferring focus); e.g.,

CALL "*WINAPI;SetForegroundWindow",HANDLE,RESULT

If multiple concurrent dialogue windows are displayed (using OPT="&"), then all
the concurrent windows are active, and the user can move among them by clicking
on the window.

Closing/Removing
Windows can be closed in two ways. The first is to use the 'POP' or 'WR' mnemonic.
This removes the currently-focused window from the top of the stack and restores
the previously-focused window. Sometimes however, the window you want to
remove is not the currently-focused window. To provide better control, the 'DROP' or
'WD' mnemonics allows you to close a specific window by window ID reference.

Consider the following:

LET WindowNumOne=HWN(0);PRINT ‘DIALOGUE’(10,2,40,10,WindowNumOne,"Special
Number One Window",OPT="SX*"),’CS’,’SB’,

LET WindowNumTwo=HWN(0);PRINT ‘DIALOGUE’(41,2,40,10,WindowNumTwo,"Special
Number Two Window",OPT="SX*"),’CS’,’SB’,

To close the first window using 'POP' would require two steps: Switch focus via
PRINT ‘GOTO’ (WindowNumOne), then PRINT ‘POP’.

The 'DROP' mnemonic handles this in one step: PRINT ‘DROP’(WindowNumOne).
Good programming practice would be to actually do the following:

PRINT (0,ERR=*NEXT)‘DROP’(WindowNumOne)

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 146

Special Function Windows

Two pre-formatted window types are also available to perform special functions in
your GUI application. The directives discussed below are used for creating a
dialogue box for selecting files and directories (GET_FILE_BOX) and a popup
message box (MSGBOX).

GET_FILE_BOX - File Selection Dialogue
GET_FILE_BOX

The GET_FILE_BOX directive displays a standardized window to enter or select a file
or directory on the system. On a Windows system, the standard Windows file
selection dialogue is used, while WindX/JavX/UltraFX systems use a dialogue box
created by a ProvideX utility program. There are different formats of the
GET_FILE_BOX directive to accommodate selecting a file to READ or to WRITE or to
select a DIRECTORY. For complete syntax details, refer to the GET_FILE_BOX
directive in the Language Reference, p.138.

Examples:
GET_FILE_BOX READ PathName$,CurDir$,"Select Report File",
"Report Files (*.pvr)|*.pvr,All Files (*.*)|*.*,","pvr"

On a Windows XP system, the above code would appear as follows:

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 147

In a WindX environment, the example would appear as follows:

MSGBOX - PopUp Message Box
MSGBOX

The MSGBOX directive displays a window with a message in the middle of the
screen. Various options are available as to which buttons, icons and behaviour
combinations may to be applied to the window:

Buttons:
OK Ok only
CANCEL Ok, Cancel
RETRYCANCEL Retry, Cancel
ABORT Abort, Retry, and Ignore.
YESNO Yes, No
YESNOCANCEL Yes, No, Cancel
1 (or 2 or 3) Default button number

Icons:
STOP Stop sign
INFO Lowercase 'i ' in a circle.
QUESTION or ? Question mark
EXCLAMATION or ! Exclamation Mark

Miscellaneous:
BEEP Send associated sound
TIM=num Maximum time-out value in integer seconds for closing

automatically. The returned value is "TIMEOUT".
TOP or ^ Always on top (forces foreground window)

The user's message box button selection is returned in a string variable. Possible
associated return values are ABORT, CANCEL, IGNORE, NO, OK, RETRY, or YES
depending on the button selection required.

For syntax details, refer to the MSGBOX directive in the Language Reference, p.212.

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 148

Examples:
X$="John Smith"
MSGBOX "Your entry ["+X$+"] cannot be found."+SEP+"Do you wish to

continue?", "Warning","YESNO,2,!",yesno$
PRINT X$
NO

In the above example, a SEP has been inserted in the message to break it to a second
line. The and buttons have been specified (YESNO). The default
set to 2. An ! exclamation icon is displayed

MSGBOX "The report is completed","F.Y.I.","TIM=3"

In this example, the message box will self-destruct in 3 seconds.

Customizing the Message Box
It is possible to override the Windows standard message box and instead use a
message box that you develop yourself. The 'MX' system parameter will redirect to
subprograms *ext/msgbox.gui (user-defined) or *ext/system/msgbox.gui
(ProvideX-supplied) to process the request instead of the system message box.

By default, ProvideX sets the 'MX' parameter to On when *ext/msgbox.gui is found
to exist. The msgbox.gui subprogram creates and displays a message box that is
virtually identical to the standard Windows system message box but will use XP-style
(or Vista) buttons if the '4D' mnemonic is enabled. In addition, it will use the
currently-selected windows graphic font.

Several internal bitmap names for standard Windows bitmaps are available for
displaying the embedded OS icons used by the normal message box API call:
!Sys_Stop, !Sys_Question, !Sys_Info, and !Sys_Exclamation.

The button text ABORT, CANCEL, IGNORE, NO, OK, RETRY, or YES are included in the
system message library file (i.e., *mlfile.en) to provide support for multi-lingual
systems. Message numbers are defined as follows:

Note: When 'MX' is set, MSGBOX commands entered in console mode or executed within
an EXECUTE command cannot be followed by any other command (as MSGBOX will
be executing a CALL without a return address).

MSG() Number String
160 "OK"

161 "OK,Cancel"

162 "&Retry,Cancel"

6. Graphical User Interfaces Interface Windows

ProvideX User’s Guide V8.30 Back 149

Use the DEF MSG directive to temporarily override the message text associated with
the MSG() number. This directive allows messages to be changed on the fly. For
example, MSG(164) "&Yes,&No" can be changed to another language:
DEF MSG(164) = "&Oui,&Non"

Using Customized Messages with WindX
Use of this facility under WindX requires some additional effort by the developer;
i.e., will the subprogram be running on the host or on the workstation. If the
program runs on the host, it will transmit the screen drawing information to the
workstation just like any other ProvideX program. If the program is to run on the
workstation, the host will simply send the MSGBOX parameters to WindX, which in
turn runs the program locally (assuming it is present).

The setup for WindX is described as follows:

• To run the host’s msgbox.gui, set the 'MX' system parameter. No change is
required for workstation software.

• To run the workstation’s msgbox.gui, ensure that the program exists on the
workstation, then execute [wdx]Set_param 'MX' to set the parameter locally.

This takes advantage of the fact that ProvideX automatically sets 'MX' based on the
existence of a (user-defined) *ext/msgbox.gui. Simply copy the msgbox.gui
from *ext/system to the *ext directory on the host, the system will use it and
send screen drawing directives to the workstation. If it is copied (or installed) to
*ext on the WindX workstation, the system will automatically use it, assuming it is
not overridden by the host.

This customizable MSGBOX also takes advantage of the 'BEEP' mnemonic.

163 "&Abort,&Retry,&Ignore"

164 "&Yes,&No"

165 "&Yes,&No,&Cancel"

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 150

Control Objects Cont rols

Control objects are the graphical components within a panel that allow users to
interact with the application. This section describes the different types of controls
that can be added to a panel and how various attributes, settings, and logic may be
applied to controls:

Descriptions and examples of the associated directives and other graphical Syntax
Elements are provided in the sections that follow.

When control objects are manipulated, they can generate CTL values (control signal
codes) into the input buffer to signal events that have occurred, such as receiving
focus or changing values. EOM values (end-of-message strings) are also updated to
indicate how an event occurred; i.e., via mouse-click or by pressing .

The CTL value of each object is determined when the control object is defined. A
program generally monitors the input queue for these values and triggers logic
associated with the various events. The sample programs at the end of this chapter
show how to build an event-driven application (see Example Programs, p.208).

When monitoring the input queue for CTL values, you can also monitor for negative
CTL values that indicate certain keystrokes, mouse-clicks and other events such as
resizing the panel. See Negative CTL Definitions in the Language Reference, p.813.

Button BUTTON [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]
BUTTON {REMOVE|DISABLE|ENABLE|ON|OFF} [*]ctl_id
BUTTON {HIDE|SHOW|GOTO} [*]ctl_id
BUTTON SET_FOCUS [*]ctl_id,ctl_val
BUTTON READ [*]ctl_id,mode$

When a user clicks a button in a graphical application, it is usually defined to send a
signal (ctl_id) to the application to perform a specific action (see CTL Values). Several
options are available for creating a button control in ProvideX.

For syntax details, refer to the BUTTON directive in the Language Reference, p.34.

Topics Button, p.150
Radio Buttons, p.154
Check Box, p.152
Tristate Box, p.153
Menu Bar, p.162

Popup Menu, p.165
Drop Box, p.178
Multi-Line, p.155
List Box, p.166
Variable Drop Box, p.179

Variable List Box, p.177
Scrollbars, p.194
Grid, p.180
Chart, p.195

Enter

Note: When focus is on certain control objects, such as a list box or grid, many
keystrokes (UP-ARROW, DOWN-ARROW, PAGE UP, PAGE DOWN, etc.) are utilized directly by the
control object itself and are not available to the input queue.

Note: Other similar "button" behaviour may be defined using Radio Buttons, Check
Box, or Tristate Box controls, which are described in the sections that follow.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 151

The BUTTON directive can also be used to place an Taskbar Notification Icon in the
bottom-right corner of the MS Windows desktop (a.k.a. the System Tray). See also,
Handling Images and Icons, p.398.

BUTTON

Example:
PRINT 'PICTURE'(@X(0),@Y(15),@X(80),@Y(25),"bluewave.bmp",4),
B1=1001;
BUTTON B1,@(5,18,10,2)="{!book_open}Library"
B2=1002;
BUTTON B2,@(20,18,10,2)="Library",OPT="T";
B2'TEXTCOLOUR$="White"
B3=1003;
BUTTON B3,@(35,18,10,2)="Library",OPT="VUTf";
B3'HOVERCOLOUR$="Light Yellow"
INPUT "Press any key to end ",*,'CS',

This program creates three buttons with control IDs of 1001 to 1003, 10 columns wide
and 2 lines high. The first button contains a bitmap of an open book and the text
library. The ProvideX installation includes a group of internal bitmaps available for
use in control objects identified by a leading ! exclamation point in the syntax. Braces
indicate that the bitmap is to be placed on the button.

The second button is specified with the 'T' option, making it transparent so that the
image below shows through and the text colour has been changed to white using a
dynamic property. The "VUTf" options are applied to the third button to make it
transparent and flat with no border. It also has underlined text that changes colour to
yellow when the mouse hovers over it.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 152

Check Box CHECK_BOX [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]
CHECK_BOX {REMOVE|DISABLE|ENABLE|ON|OFF}[*]ctl_id
CHECK_BOX {GOTO|HIDE|SHOW} [*]ctl_id
CHECK_BOX SET_FOCUS ctl_id,ctl_val
CHECK_BOX READ [*]ctl_id,state$[,mode$]
CHECK_BOX WRITE [*]ctl_id,state$

The check box is a button type control that allows users to toggle between states: On
to select it, Off to de-select it. Check boxes may include a text label and graphics. For
complete syntax, refer to the CHECK_BOX directive in the Language Reference, p.47.
This directive can also be used to create a Taskbar Notification Icon, p.197.

CHECK_BOX

Example:
CHECK_BOX 10,@(10,18,20,1.5)="&Toggle for Status"
CB2=20
CHECK_BOX CB2,@(10,20,20,1.5)="Option &B",FNT="Arial,1,I"
CB2'VALUE=1
CB3=30
CHECK_BOX CB3,@(40,18,4,2.5)="{!Unlock|!Lock}"
CB4=40
CHECK_BOX CB4,@(48,18,4,2.5)="{!Unlock|!Lock}",OPT="F",TBL="YN";
CB4'VALUE$="N"
INPUT "Press any key to end ",*,'CS',

This program creates four check box controls. The first two are standard check boxes,
in the off (default) and on states. Notice the use of the & ampersand. This makes the T
in Toggle a hot key which when used in conjunction with the key will transfer
focus to this control. The last two check boxes contain images. When an image is
included, the check box takes on the appearance of a button, in this case a regular

Alt

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 153

and a flat button. These check boxes are created with two images, one for each state.
The last check box is also created with a translation table, "YN". This means that the
off / on values are Y and N rather than 0 and 1.

Tristate Box TRISTATE_BOX [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]
TRISTATE_BOX {REMOVE|DISABLE|ENABLE|ON|OFF} [*]ctl_id
TRISTATE_BOX {GOTO|HIDE|SHOW} [*]ctl_id
TRISTATE_BOX READ [*]ctl_id,state$
TRISTATE_BOX WRITE [*]ctl_id,state$

A tristate box is a type of Check Box that allows a third state to be activated; e.g., the
third state may have the control greyed-out to indicate that the option is unavailable.
Refer to the TRISTATE_BOX directive in the Language Reference, p.340. This directive
can also be used to create a Taskbar Notification Icon, p.197.

TRISTATE_BOX

Example:
CB1=10,CB2=20,CB3=30,CB4=40,CB5=50,CB6=60
TRISTATE_BOX CB1,@(10,18,20,1.5)="&Toggle for Status"
TRISTATE_BOX CB2,@(10,20,20,1.5)="Option &B",FNT="Arial,1,I"
CB2'VALUE=1
TRISTATE_BOX CB3,@(10,22,20,1.5)="Option &C",TIP="Check to select"
CB3'VALUE=2
ButtonText$="&Destroy{!Trash|!Trash_open|!Bomb_blast}"
TRISTATE_BOX CB4,@(40,18,10,2)=ButtonText$
TRISTATE_BOX CB5,@(40,20,10,2)=ButtonText$
TRISTATE_BOX CB6,@(40,22,10,2)=ButtonText$
CB4'VALUE=0,CB5'VALUE=1,CB6'VALUE=2
INPUT "Press any key to end ",*,'CS',

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 154

Radio Buttons RADIO_BUTTON [*]ctl_id:sub_id,@(col,ln,wth,ht)=contents$[,ctrlopt]
RADIO_BUTTON {REMOVE|DISABLE|ENABLE|ON|OFF} [*]ctl_id:sub_id
RADIO_BUTTON {GOTO|HIDE|SHOW} [*]ctl_id:sub_id
RADIO_BUTTON READ [*]ctl_id,var,mode$

These control types are laid out in a group of one or more related buttons, each
representing one possible value for the variable the group represents. Only one
button can be active at a time; i.e., when a user selects one of the radio buttons, that
selection is activated on and all other related radio buttons are automatically set to
off. For syntax details, refer to the RADIO_BUTTON directive in the Language
Reference, p.261.

Example:
PRINT 'PEN'(1,2,8),'FILL'(0,8),
PRINT 'RECTANGLE'(@X(6.5),@Y(15.5),@X(25),@Y(23),10),
RADIO_BUTTON 100:1,@(8,16,10,2)="&Daily"
RADIO_BUTTON 100:2,@(8,18,10,2)="&Weekly"
RADIO_BUTTON 100:3,@(8,20,10,2)="&Monthly"
RADIO_BUTTON ON 100:1
!
rbctl=200,images$="{!File|!File_open}RadioButton"
rb=3
FOR rb
RADIO_BUTTON rbctl:rb,@(30+(rb-1)*15,20,15,1.5)=images$+STR(rb)
NEXT rb
rbctl'value=2
INPUT @(0,24),"Press any key to end ",*,

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 155

In the above example, the standard set of radio buttons (left side examples) appears
as a series of of circular/radio-knob buttons, of which only one button is active at a
time. When images are defined within the button content (right side examples) they
appear as regular buttons, with the exception that when one is selected it remains
depressed and the other related buttons are automatically de-selected.

When referencing a specifc radio button, the individual index must be used to identify
it, as in RADIO_BUTTON 100:1,@(8,16,10,2)="&Daily". When referencing
specific radio buttons using Dynamic Control Properties, you must set the 'ID
property first to identify it, as in rbctl'id=2,rbctl'text$="{!File}New
text".

Multi-Line MULTI_LINE ctl_id, @(col,ln,wth,ht)[,ctrlopt]
MULTI_LINE {REMOVE|DISABLE|ENABLE|LOCK|UNLOCK} ctl_id
MULTI_LINE {GOTO|HIDE|SHOW|AUTO} ctl_id
MULTI_LINE SET_FOCUS ctl_id,ctl_val
MULTI_LINE READ ctl_id,var$[,mode$]
MULTI_LINE WRITE ctl_id,contents$

A multi-line input area is used to enter and display text. If the multi-line input field
is more than one line in height, ProvideX adds scrollbars and applies word
wrapping. If the height of the multi-line is less than or equal to the height of a line of
text, no scrollbars are drawn and the text will automatically scroll to the left as the
input box is filled. Input lengths and formats, as well as AutoComplete and
Calendar functionality, may be applied to multi-line controls. For syntax details,
refer to the MULTI_LINE directive in the Language Reference, p.214.

Examples:
M1=100,M2=200,M3=300
MULTI_LINE M1,@(60,1,12,1)
MULTI_LINE WRITE M1,"The quick brown fox jumped"
MULTI_LINE M2,@(60,3,12,5),LEN=30
MULTI_LINE WRITE M2,"The quick brown fox jumped"
MULTI_LINE M3,@(60,9,12,1),OPT="BL"
M3'BACKCOLOUR$="WHITE"

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 156

MULTI_LINE WRITE M3,"over the lazy dog."
OBTAIN *

The examples show multi-lines that are a single line and several lines high. When a
multi-line with a height of one is displayed, it is actually drawn with a height greater
than 1 (one) to accommodate the height of the text plus white space above and below it.
A third multi-line is also included that is locked and borderless. This type of multi-line is
often used for display-only text that may need to be changed dynamically. Locked
multi-lines are normally grayed-out, so the background colour may need to be changed
to match the panel background.

MULTI_LINE WRITE is used to load a string into the input area. You can set the 'Value
property to do this as well.

Formatting Input
An input format can also be imposed on the multi-line using the FMT= clause or by
setting the 'FMT$ property; e.g.,

M1=100,m2=200
MULTI_LINE M1,@(60,2,10,1),FMT="#,##0.00-"
MULTI_LINE WRITE M1,"-123.456"
MULTI_LINE M2,@(60,4,10,1)
M2'FMT$="#,##0.00-"
SET_FOCUS M2

For details on format masks, refer to Data Format Masks in the Language
Reference, p.809.

AutoComplete
The ProvideX AutoComplete feature enables multi-line controls to show suggested
text based on partially-typed entries in an attached dropbox. With this functionality
turned on, a multi-line field can be set up to remember what a user has entered so
that the next time they begin to type, it will display a list of previously entered
words/ phrases that match what the user has typed thus far.

Note: NOMADS offers a utility for specifying auto-complete definitions that can be
assigned to multi-lines on a panel. Refer to the ProvideX NOMADS manual.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 157

Auto-complete is also useful for handling repetitive data entry. In this case, you can
populate the data in advance so that the user will receive suggestions from a preset
list of matches as they type in the field. The preset data may be retrieved from
application data files accessed in read-only mode.

To set up a multi-line to use auto-complete functionality, a definition string must be
built and specified using the HLP= clause when the multi-line is created, or using
the 'AutoComplete$ property (see Dynamic Control Properties, p.137). The
definition string consists of a number of parameter settings separated by semicolons:

When setting AutoComplete using the HLP= clause, the definition string must be
prefixed with "[AutoComplete]"; e.g.,

Parameters$="DATAFILE=ac_clname.dat;KNO=1;FIELD=2;READONLY=YES"
MULTI_LINE ctl_id, @(10,2,15,1)),HLP="[AutoComplete]"+parameters$

When using the 'AutoComplete$ property, just specify the parameters; e.g.,

ctl_id'AutoComplete$="DATAFILE=ac_clname.dat;KNO=1;FIELD=2;READONLY=YES"

For multi-lines that are intended for remembering previous entries, a keyed file must
be set up to to store the entries. Generally, a keyed file should be created by you for
each set of multi-line entries required for your application; e.g.,

0010 LET F$="ac_clname.dat"; ERASE F$,ERR=*NEXT
0020 KEYED F$,[1:1:30:"C"],0,-40

AutoComplete will be based on the internal key of the keyed file which must be case
insensitive for this functionality to work correctly. If the key is case sensitive, all
lowercase keys will be ignored. For information on creating keyed files in ProvideX,
refer to the KEYED directive in the Language Reference, p.165.

AUTOPURGE=YES|NO
Automatically purges expired records. Expired words or phrases
are only purged when the multi-line is accessed. Default is NO.

DATAFILE=path$ Name of keyed file that contains the words/phrases. This file
should be resident and accessible on the local workstation.

EXPIRED=num Number of days a given record will be used before expiry. If this
is not set or set to 0, the words/phrases do not expire.

FIELD=num Field that is being displayed.
KNO=num Key number to be used.
LENGTH=num Maximum number of characters that will be displayed.
OFFSET=num Starting position within the field to be displayed.
PREFIX=string$ Prefix that will be used for searching matching words/phrases.
READONLY=YES|NO

ProvideX does not automatically update the key file when user
enters a new word and/or phrase. Default is YES.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 158

Once the user enters new text in the multi-line, each word/phrase will be saved to
the keyed file. When the user tries to type the same information again, they will be
presented with a match from the associated keyed file before they finish typing.

For multi-lines that are intended for preset entries, the associated keyed file will
already be populated with data. This could be an existing source data file used in
your application. It is recommended that the READONLY= parameter be set to YES
when defining this type of auto-complete scenario; otherwise, the existing data may
become corrupted as ProvideX tries to update the file with new user entries.

Example:
In the following code, the auto-complete definition for MultiLineA is specified
using the MULTI_LINE directive declaration and for MultiLineB it is specified
using the 'AutoComplete$ property. They both use the same key file.

F$="AutoComplete.dat";
ERASE F$,ERR=*NEXT
KEYED F$,[1:1:30:"C"],0,-40
MULTILINEA=1000;
MULTILINEB=1001
AUTODEF$="Datafile=Autocomplete.dat;Readonly=NO"
MULTI_LINE MULTILINEA,@(25,4,20,1),HLP="[AutoComplete]"+AUTODEF$
MULTI_LINE MULTILINEB,@(25,8,20,1)
MULTILINEB'AUTOCOMPLETE$=AUTODEF$
ESCAPE

The result appears similar to the address edit box in a web browser. Initially, the key
file is empty, so nothing will happen when the user types. When the user enters new
text in the multi-line, each word/phrase will be saved in the keyed file. If the user
tries to type the same word/phrase again, it will find a match from the list before
they finish typing.

Client-Server Environment. In this scenario, the file used by the auto-complete logic
to store and/or retrieve data must be on the client machine by default. If you wish
to retrieve data from a read only file on the server, you must use additional program
logic to accomplish this.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 159

Set the 'AutoCTL property of the MULTI_LINE with a ctl_id to be generated when
content is needed for loading values in the auto-complete dropbox. The final
character of the list is used as the list item delimiter. Assign the list to the MULTI_LINE's
AutoValue$ property. This will cause the dropbox to be loaded for selection.

It is also possible to create a list with tab-separated display/return value pairs that
displays the first item of the pair in the drop box, but uses the second item to load the
multi-line when selected. For example, a list consisting of

"12345 - Barry's Bargain Bistro"+09+"12345"+$0A$+"12121 -
ABC Company"+09+"12121"+$0A"

... would display the following:

12345 - Barry's Bargain Bistro
12121 - ABC Company

... but would load 12345 or 12121 into the multi-line depending on the selection.

Providex supplies an object class definition called *obj/mlac.pvc to build the list
of entries for the drop box. The object class should be instantiated after the
multi-line it services has been created. The class possesses two methods, a
Load(ctl_id) method which uses the multi-line's assigned CTL value as an argument.
Once loaded, the GetList$() method can be called to create the contents of the
auto-complete drop box associated with the multi-line.

The contents of the dropbox may be a simple list defined by the FIELD=, OFFSET=
and LENGTH= parameters, and where the selected value is loaded back into the
multi-line. It may also be a more complex combination of literals and fields defined
using the DISPLAY= and RETVAL= parameters, which also allows for a different
value to be loaded into the multi-line than the one displayed.

Example:
m=1000,m1=1001
AutoDef$="[AutoComplete]Datafile=cstfile;KNO=1;Field=2;READONLY=YES"
MULTI_LINE m,@(10,18,25,1),HLP=AutoDef$
m'AutoCtl=m1
mlac=NEW("*obj/mlac");
mlac'Load(m)
SET_FOCUS m
WHILE 1
OBTAIN *
IF CTL=4 \
 THEN BREAK
IF CTL=m1 \
 THEN m'AutoValue$=mlac'GetList$()
WEND
DROP OBJECT mlac
END

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 160

Calendar
The ProvideX Calendar feature provides a user-friendly way to enter date information
into a multi-line input area. When applied to a multi-line, a button will be added to the
control that can be clicked to invoke a month-calendar pop-up. This will allow users to
pick a date to be inserted automatically into the multi-line input area. The format of the
date inserted is based on the formatting rules of the DTE() function.

To set up a multi-line to use Calendar functionality, a definition string must be built
and specified using the HLP= clause when the multi-line is created, or by setting the
'Calendar$ property (see Dynamic Control Properties, p.137). The definition
string consists of a number of parameter settings separated by semicolons:

CALENDAR=YES|NO
YES turns on the calendar support. NO turns it off. Default is NO.

CONTENTS=string$ Text or graph appearing on the button, default is {!DATE}.
DTE=date$ Date formatting rules. Default is based on the DTE(). Semi-colon

cannot be part of this parameter (if used, the string following
will be ignored). Date code should include % percent; however,
if not used, input will be parsed based on format provided. If a
time formatting string is included, the current time is used.

HEIGHT=num Height of button. Defaults to height defined for MULTI_LINE.
SHOWBUTTON=YES|NO

YES shows the calendar button. NO hides it. Default is YES.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 161

When setting the Calendar feature using the HLP= clause, the definition string must
be prefixed with "[Calendar]"; e.g,

MULTI_LINE ctl_id, @(10,2,15,1)),HLP="[Calendar]CALENDAR=YES;DTE=%Y%M%D"

When using the 'AutoComplete$ property, just specify the parameters; e.g.,

ctl_id'Calendar$="CALENDAR=YES;DTE=%Y%M%D;CONTENTS={!Calendar}"

Example:
A=1000,B=1001
MULTI_LINE A,@(10,16,10,1),HLP="[CALENDAR]CALENDAR=YES"
PRINT @(0,13),"A: ",A'CALENDAR$
MULTI_LINE B,@(40,16,15,1)
B'CALENDAR$="CALENDAR=YES;DTE=%Y %Ml %D;Contents=Enter Date;Width=10"
PRINT @(0,14),"B: ",B'CALENDAR$
WHILE 1
OBTAIN *
IF CTL=4 \
 THEN BREAK
WEND

To invoke the calendar, the user can click on the calendar button, press
or when the calendar button has focus, or - when the multi-line or
button has focus. For syntax details on the ProvideX Calendar feature, refer to the
MULTI_LINE directive in the Language Reference, p.214.

WIDTH=num Width of the button. Default width is equal to the height
defined for the MULTI_LINE; i.e., the default size is a square.

SPACEBAR

ENTER Shift F2

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 162

Menu Bar MENU_BAR ctl_id,menu_def$
MENU_BAR {REMOVE|DISABLE|ENABLE|ON|OFF} element[$]
MENU_BAR GOTO
MENU_BAR READ var$
MENU_BAR CLEAR
MENU_BAR RESET

Use the MENU_BAR directive to define and control the menu bar options across the
top of a window/panel. Top level menu items, sub-menus, subordinate entries, hot
keys, and menu images/icons can all be defined using this directive. For syntax
details, see MENU_BAR in the Language Reference, p.202. For related functionality,
refer to the Popup Menu, p.165.

Defining Menus and Sub-Menu Entries
The top level of the menu consists of a list of comma-separated entries enclosed in
square brackets, each entry containing a unique selection character prefixed with an
& ampersand used to identify it as a hot key; e.g.,

"[&File,&Edit,E&xit]".

The MENU_BAR directive adds the Help menu bar option by default. You can
remove this option by specifying a dash immediately after the opening quote; e.g.,

MENU_BAR 99,"-[&File,&Edit,E&xit]

Sub-menus are identified by the hot key(s) used to open them, followed by a colon
and a list of subordinate entries enclosed in square brackets; e.g.,

MENU_BAR 99,"-[&File,&Edit,E&xit],F:[&Open,&Close,&Print,E&xit]"

The text for subordinate entries may also contain tab characters (09) to separate
additional item information, such as alternate hot keys. You can include lines to
separate items by inserting an additional comma between items:

MENU_BAR 99,"-[&File,&Edit,,E&xit],F:[&Open,&Close,&Print,E&xit],
E:[&Cut"+09+"Shft-DEL,&Paste"+09+"Ins,&Format]"

Further sub-menus are identified by combining the higher level hot keys; e.g.,

MENU_BAR 99,"-[&File,&Edit,E&xit],F:[&Open,&Close,&Print,,E&xit],

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 163

E:[&Cut"+09+"Shft-DEL,&Paste"+09+"Ins,,&Format],EF:[&Word Wrap]"

Normally, when a user selects any of the items from a menu bar, ProvideX generates
the ctl_id you assigned to the menu bar. You can return the selected menu item code
in a string variable using MENU_BAR READ. For example, if the user selected Word
Wrap from the above menu, MENU_BAR READ would return EFW. It is also possible
to assign specific CTL values to individual menu entries. To do this, append an
equals sign and the CTL value to any item in the menu selection list; e.g., E&xit=4.

Changing Menu Appearance
Menu items can be disabled, displayed in bold, or show a checkmark, by placing a
"D", "B", or "C" after the equal sign and before the assigned CTL value; e.g.,
"[&One=1,&Two=BC2,&Three=D3]".

Items can also be enabled/disabled or checked/unchecked after the menu is created
using MENU_BAR DISABLE|ENABLE and MENU_BAR ON|OFF directives; e.g.,

MENU_BAR DISABLE "EP"
MENU_BAR ON "EFW"

To include images with each item in the menu, enclose the image name in curly
braces and place it in the menu definition just prior to the specific item text. Use a
leading ! exclamation point to identify the image as internal, or specify the relative
path and filename to access an image file that is external. The first bitmap
determines the dimensions used to display menu items (up to 64x64); e.g.,

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 164

E:[{!Cut}&Cut"+09+"Shft-DEL,{!Paste}&Paste"+09+"Ins,,&Format]

Transparency options are also available. "T" indicates use of the upper left most
pixel colour, and "G" means use colour RGB:192,192,192.

Colours may be applied to the left edge of the menu where images are displayed, as
well as to the text background area. (Colours do not apply to the top-level of the
menu). The LEFT(colour) and Fill(colour) parameters are used to do this. The colour
for the left edge applies to the entire menu and is specified prior to the menu items.
The text area colour may apply to the entire menu if specified prior to the menu
items, or to a specific item.

Example:
MENU_BAR 99,"-LEFT(YELLOW),FILL(RGB:255,255,192),[&File,&Edit,E&xit],
F:[&Open,&Close,&Print,,E&xit],
E:[{!Cut}&Cut"+09+"Shft-DEL,{!Paste}&Paste"+09+"Ins,,&Format],
EF:[&Word Wrap=FILL(RGB:192,255,255)]"

Processing Menu Bar Actions
To process a menu bar, you would trap its CTL value or the CTL value of an
individual item. In the first case, you would then have to execute a MENU_BAR
READ directive to determine which item was selected, then process as desired; e.g.,

PRINT 'CS',
MENU_BAR 99,"[&File,&Edit,E&xit=4],F:[&Open,&Close],E:[&Cut,&Paste]"
WHILE 1
OBTAIN *
IF CTL=4 \
 THEN BREAK
IF CTL=99 \
 THEN MENU_BAR READ X$;
 PRINT X$
WEND
END

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 165

Popup Menu POPUP_MENU [@(col,ln)], list$, [strvar$|numvar]

Popup menus are designed to "pop up" over the current window when you
right-click on a selected control (Button, Multi-Line, List Box, etc.). Popups are
similar to menu bars except for the fact that they can be placed anywhere on the
panel and are only visible when invoked. The control objects that these popups are
attached to are created using the MNU= option, which defines the CTL value that
will be generated when the user right-clicks on the control.

The definition of a popup menu is similar to to that of a Menu Bar control. For
syntax details, see POPUP_MENU in the Language Reference, p.245.

Example:
Menu$="[&File,&Edit,E&xit],F:[&Open,&Save],E:[C&ut,&Copy,&Paste]"
BUTTON 100,@(40,10,10,2.5)="&Popup Menu",MNU=101
WHILE 1
OBTAIN *
IF CTL=4 \
 THEN BREAK
IF CTL=101 \
 THEN POPUP_MENU Menu$,X$;
 PRINT "Selected: ",X$
WEND
END

Once a popup menu is created and assigned to a control, it remains invisible until
the user right-clicks while the mouse is over the enabled component. In the example
above, a CTL value of 101 will be triggered when you right-click on the associated
button. At this point, the application will issue the POPUP_MENU directive; e.g.,

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 166

List Box LIST_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]
LIST_BOX {REMOVE|DISABLE|ENABLE} ctl_id
LIST_BOX {GOTO|HIDE|SHOW|AUTO} ctl_id
LIST_BOX SET_FOCUS ctl_id,ctl_val,
LIST_BOX LOAD ctl_id,dlm_list$
LIST_BOX LOAD ctl_id,array_name${ALL}
LIST_BOX LOAD ctl_id,index,{element$ | *}
LIST_BOX FIND ctl_id,index,var$
LIST_BOX READ ctl_id,var$[,mode$]
LIST_BOX READ ctl_id,var[,mode$]
LIST_BOX WRITE ctl_id,element$
LIST_BOX WRITE ctl_id,index
LIST_BOX WRITE ctl_id, ""

List box controls allow users to select items from a displayed list. Users can select but
not enter values in a list box. Use a Variable List Box to implement a list box that
allows both variable input as well as selection from a list. The LIST_BOX directive
can be used to create and load several different List Box Styles.

List Box Styles
Standard list boxes contain a single column of data with no formatting. Other
available list box styles are described as follows:

Alternate styles are defined using the ctrlopt settings OPT= and FMT=. For syntax
details, refer to the LIST_BOX directive in the Language Reference, p.178.

Example 1 - Standard List Box
The following example displays a simple Standard list box with a single column of
data and no formatting:

LIST_BOX 100,@(10,6,12,6)
LIST_BOX LOAD 100,"Cat/Dog/Pig/"

Formatted Displays multiple elements in different columns with alignment
and width formatting, allowing colour mnemonics to be inserted
into the data.

List View Lists a single element over multiple columns, where data wraps
from the bottom of one column to the top of the next.

Report View Displays multiple elements in different columns (like a formatted list
box) and allows column headings, sorting, bitmaps and other
attributes.

Tree View Displays data grouped hierarchically into a collapsible tree-like
structure which optionally may include + and - buttons to expand
tree levels, dotted lines, etc. State indicators may be applied to Tree
View list boxes (see State Indicators, p.173).

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 167

LIST_BOX WRITE 100,"Pig"

The LIST_BOX LOAD directive loads the list box in one step using a single variable
that contains all the list items separated by delimiters. In this case, the "/" character
is used to delimit the individual entries. (The delimiter is derived from the last
character in the string and could be any character.)

LIST_BOX LOAD can also be used to clear a list box, e.g., LIST_BOX LOAD 100,"".
Also, it can be used to remove an item; e.g., LIST_BOX LOAD 100,n,*. Where n
specifies the index number (i.e., sequential position) of the entry to delete, and * signals
the delete function.

The LIST_BOX WRITE directive is used to select an entry, and can be set utilizing
either the text of the entry or its index number.

Example 2 - List Box Styles
The next example displays four different types of list boxes: a formatted list box,
using different colours and items displayed over multiple lines; a list view, using
images; a report view, with multiple columns; and a tree view.

PRINT 'CS',@(5,1),"Formatted list box"
LIST_BOX 100,@(5,3,30,5),OPT="~",FMT="L20 R10/C30",SEP="/"
LIST_BOX LOAD 100,0,"First column/12345/Second line"
LIST_BOX LOAD 100,0,'BLUE'+"Blue column/"+'RED'+"red/"+'BLACK'+ \

"Centered"
LIST_BOX WRITE 100,"First column/12345/Second line"
!
PRINT @(40,1),"List View"
DIM Items$[1:7]
Items$[1]="!File,John Doe",Items$[2]="!File,Fred"
Items$[3]="!File,Mary Potter",Items$[4]="!File,Jane Said"
Items$[5]="!Done,Rita Pita",Items$[6]="!Done,Justin Case"
Items$[7]="!Done,Harry Aipe"
LIST_BOX 300,@(40,3,30,5),OPT="l",FMT="{}",SEP=","
LIST_BOX LOAD 300,Items${ALL}

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 168

LIST_BOX WRITE 300,"!File,Mary Potter"
!
PRINT @(5,9),"Report View"
LIST_BOX 200,@(5,11,30,10),OPT="rV",FMT="{} [Name]L20 [ID]R8"
SELECT cst_id$,cst_name$ FROM "cstfile"
LIST_BOX LOAD 200,0,"!file_edit"+SEP+cst_name$+SEP+cst_id$
NEXT RECORD
LIST_BOX WRITE 200,1
!
PRINT @(40,9),"Tree View"
LIST_BOX 400,@(40,11,30,10),OPT="e|!E",FMT="{!Page|!File|!File_open}"
SELECT cst_id$,cst_name$,*,*,*,cst_smn$ FROM "cstfile",KNO=2
item$=cst_smn$+SEP+cst_name$+SEP+cst_id$
LIST_BOX LOAD 400,0,item$
NEXT RECORD
LIST_BOX WRITE 400,item$
!
INPUT @(0,23),"Press any key to exit ",*,'CS',
END

For more information on how to create these list box styles, refer to the sections
below. See also Loading List Boxes, p.170, Load on Demand, p.171, and Selecting
Items From a List Box, p.171.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 169

Formatted Style
Formatted

The formatted list box allows you to display multiple data elements over multiple
columns in a table format. This type of list box is created by adding FMT= settings to
the LIST_BOX definition; e.g.,

LIST_BOX 100,@(5,3,30,5),OPT="~",FMT="L20 R10/C30",SEP="/"

The list of columns is a space-separated string enclosed in quotation marks. Each
column is formatted with an alignment code for left, right or centre (Ln, Rn, Cn). The
width in the format definition is the display (window) width, not the number of
characters in the text. Each new row is delineated by a /slash. To hide data, use "S" to
indicate that a column is to be skipped – data is present, but not displayed and the
user cannot gain access to the column.

Details for creating a Formatted list box are provided under the LIST_BOX directive in
the Language Reference, p.187.

List View Style
Lis t View

A list view is similar to a standard list box, but it displays the data as a continuous list
over multiple columns. This type of list box is created by adding OPT="l" (lowercase
L) to the LIST_BOX definition; e.g.,

0200 LIST_BOX 100,@(2,14,12,6),FNT="*",OPT="l"

Use FMT= to override the default column sizing of the list view (only "Ln", "Rn",
and "Cn" alignment are supported). A bitmap/icon may be placed to the left of the
data element, by including {} curly braces in the FMT= string.

Details for creating a List View list box are provided under the LIST_BOX directive in
the Language Reference, p.189.

Report View Style
Repor t View

A Report View displays multiple data elements in table form (similar to a Formatted
list box), but it also includes headings, sorting, and other attributes. This type of list box
is created by adding OPT="r" to the LIST_BOX definition; e.g.,

LIST_BOX 200,@(5,11,30,10),OPT="rV",FMT="{} [Name]L20 [ID]R8"

The report view in Example 2 - List Box Styles displays a bitmap at the beginning of
each row/line and uses full-row highlighting. Other OPT= settings to refine a report
view include "b"(suppress column header buttons), "p" (highlight partial matches)
"q" (disable sorting), "v" (first column highlight), and "V" (full row highlight).

Use FMT= to define column alignment, titles, sorting, and bitmap placement. The
format definition is similar to that described for Formatted list boxes; however, "Ln",
"Rn", and "Cn" are the only alignment options, and there are additional sorting options
available for date and numeric sorting. A bitmap/icon may be placed to the left of the
data element, by including {} curly braces in the FMT= string.

Details for creating a Report View list box are provided under the LIST_BOX directive
in the Language Reference, p.189.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 170

Tree View Style
Tree View

A Tree View displays the data hierarchically in a tree-like structure. This type of list
box is created by adding OPT="e" to the LIST_BOX definition; e.g.,

LIST_BOX 400,@(40,11,30,10),OPT="e|!",FMT="{!Page|!File|!File_open}"

Several other OPT= settings can be used in the definition: "!" (use bitmaps/icons),
"|" (show connecting lines), "b" (suppress expand/collapse buttons); "E" (enable
direct editing), "q" (disable sorting). Use FMT= to define default images to be used
in the tree. The order of the images determines when they are used:

1. Default overall bitmap or icon: always used with any listed entries that do not
have subordinates.

2. Default bitmap or icon for items with subordinates.
3. Default bitmap or icon for items with subordinates if the tree level is expanded (i.e.,

shown) in tree view.
4. Bitmap or icon for entries that do not have any subordinates when the item is selected.
5. Bitmap or icon for entries that have subordinates when selected.
6. Bitmap or icon for entries that have subordinates when selected and level is expanded.

Details for creating a Tree View list box are provided under the LIST_BOX directive in
the Language Reference, p.192.

Loading List Boxes
The code in Example 2 - List Box Styles shows different ways to load list boxes.
There are examples of loading a list box one item at a time (Formatted, Report View,
and Tree View), loading it all at once using an array (Standard), and building the
entire list in a string variable and loading it all at once (List View).

Any method may be used with any type of list box. Loading the list box all at once is
faster than loading one item at a time, but you must wait for the compilation to
complete before anything is displayed. When loading one item at a time, the items
are displayed immediately and the list box is accessible while it loads. Load time can
be decreased by hiding the list box control while it is loading.

When loading Formatted and Report View list boxes, the values in the individual
columns must be separated using a column delimiter. By default, the SEP value is
used, but this can be changed by specifying a SEP= clause when creating the list
box, or by setting the 'SEP$ property (see Dynamic Control Properties, p.137). If
loading one item at a time, a line delimiter is not used, but if loading the entire
contents via a single load, then the last character of the string value will be used as
the line delimiter; e.g.,

LIST_BOX LOAD 200,0,"!file_edit"+SEP+cst_name$+SEP+cst_id$

Note: If images are set up for individual elements in tree view LIST_BOX LOAD and WRITE
statements, these will override the default FMT= images for the individual element.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 171

When loading a Tree View, all the levels of each entry must be specified, separated by
delimiters as described above.

item$=cst_smn$+SEP+cst_name$+SEP+cst_id$
LIST_BOX LOAD 400,0,item$

Load on Demand
Another method is available for speeding up the load process for list boxes.
On-demand loading allows an application to load a list box with only those items
the user actually scrolls into view. This reduces network traffic and file access since a
list box is only loaded with those items required by the user. Also, it assures proper
function of the scrollbar and its relationship to the list.

The following properties are used to implement load-on-demand logic:

This feature requires the developer to pre-declare the number of items that the list
box is to have (by setting the 'ItemCount property). When the user scrolls items into
view, the system generates a CTL event.

Upon receiving the CTL event (set by 'ItemNeededCtl), the application queries
‘ItemNeededFrom and ‘ItemNeededTo to determine the index number and the
number of items. The application then loads the list box with the contents of the
specified items by setting 'Item and 'ItemText$. If no elements are needed then
'ItemNeededFrom and 'ItemNeededTo will be zero. Once the value has been
loaded into the 'ItemNeededTo, ProvideX checks if further items are required and if
so, it generates another CTL event.

In the case of a Report View list box, should the user request the list be sorted or
attempt to auto-size the width of a column, the system will force a load of all list box
elements before processing the request.

In some instances the contents of the list box may need to be shown prior to the contents
being loaded, in which case the system will display 5 dots in place of the data.

Selecting Items From a List Box
To select an item from a list box, the user can use the mouse to double-click an item,
or highlight the item if the auto-signal option is specified (OPT="A"). An item can
also be selected by highlighting it and then moving focus to another control. To
determine the value of the selection, the LIST_BOX READ directive can be used, or
the control's 'VALUE$ property can be queried. The value that is returned consists of
all the column entries including the column separators and image references. In the
case of Formatted list boxes, embedded mnemonics such as colours are included as
well. Tree Views return the item and its parent branches.

‘Itemcount Defines number of items.
‘ItemNeededCtl CTL issued when data needed.
‘ItemNeededFrom Lowest item needed.
‘ItemNeededTo Highest item needed.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 172

LIST_BOX 100,@(5,3,30,5),OPT="~",FMT="L20 R10/C30",SEP="/"
LIST_BOX LOAD 100,0,"First column/12345/Second line"
LIST_BOX LOAD 100,0,'BLUE'+"Blue column/"+'RED'+"red/"+'BLACK'+ \

"Centered"
LIST_BOX WRITE 100,2
LIST_BOX READ 100,x$
PRINT x$
Blue column/red/Centered
Item$=STP(MNEMONIC x$)
PRINT Item$
Blue column/red/Centered

Standard, Formatted, List View and Report View list boxes can support multiple
item selection. This is enabled by specifying OPT="#". If items were loaded in a
single string, then when you read/write the element(s) highlighted in the list box,
the item(s) will be returned in the variable using either the delimiter from the
LIST_BOX LOAD statement or, as default delimiter, the SEP character.

To determine which items were selected, you can use the LIST_BOX READ directive
or look at the 'VALUE property. The resulting value will contain all the selected items
which must then be parsed to access the individual items. Another way to access the
selected items is to use the 'SelectCount, 'SelectIndex and 'SelectItem properties to
spin through the selections individually. 'SelectCount contains the number of
items/cells selected. (Set this property to zero to de-select all.) 'SelectIndex is the
index to point to a selected element; i.e., set to 1 to point at the first item selected, 2 to
point at the second item selected, etc. After 'SelectIndex has been set, then
'SelectItem will contain the sequential location within the list of the item being
pointed at by the 'SelectIndex property.

Example:
rv=100
LIST_BOX rv,@(40,4,35,10),OPT="rV#",FMT="[Name]L25 [ID]R8",SEP="|"
SELECT cst_id$,cst_name$ FROM "cstfile"
LIST_BOX LOAD rv,0,cst_name$+"|"+cst_id$
NEXT RECORD
!
! Select several items (normally done by mouse clicks)
LIST_BOX WRITE rv,32
LIST_BOX WRITE rv,34
!
! Determine selections using 'value$ property
PRINT 'CS',"*** Using rv'value$ ***",'LF',rv'value$
!
! Determine selections using LIST_BOX READ directive
LIST_BOX READ rv,x$
PRINT "*** Using LIST_BOX READ ***",'LF',x$
!
! Determine selections using 'SelectCount/'SelectIndex properties

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 173

i=rv'SelectCount
FOR i
rv'SelectIndex=i
PRINT "*** Using SelectIndex loop ***",'LF',rv'SelectItem, \

'LF',rv'value$
NEXT
!
OBTAIN *,

Tree Views also support multiple selections when state indicators are used. This is
discussed in the next section.

State Indicators
State indicators are basically images that appear in front of a Tree View entry that can
be used to indicate whether the item has been selected or not, or what state the item
is in. State indicators are currently supported for Tree View list boxes only.

The following properties are used to create and process state indicators:

Assigning Images. The application must set the 'StateBitmaps$ property in order to
define the number of images that will used in the display of state indicators. A
maximum of 15 images, separated by pipe character delimiters (|), can be assigned. All
images must be of the same size/format and may specify transparency options. These
images can be external or internal. The order of the images will correspond to the state
values, and may include an additional image for use with cascading states; e.g.,

tv'StateBitmaps$="!EmptyBox|!CheckedBox|!HalfCheckedBox"

'ItemState State of ‘Item.
'StateBitmaps$ List of images used to display states.
'AutoState Control auto toggling of state.
'CascadeState Control cascading of states.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 174

Toggling Between States. Once the bitmaps are set, each item/row/entry may set its
'ItemState property to determines what image is to appear next to the row text
depending on the state. A maximum of 15 states can be assigned for each image. A
state of 0 zero causes no state indicator to be displayed. For example, assuming the
list box is defined with 3 images. The first image will appear if the item state is 1, the
second image will appear if the item state is 2 and the third image will appear if the
item state is 3.

A CTL event will return EOM="S" if the property is set to a non-zero value. This is
used to identify that the user clicked over the indicator state portion of the line, as
opposed to elsewhere in the item. Applications that add state indicators to their
existing logic should add a check for this EOM code.

Auto Toggling Of States. 'AutoState is a numeric property that controls auto
toggling of states. If this property is set, state indicators can automatically be toggled
without generation of a CTL event with EOM="S".

The number of states that the system will toggle through is determined by the value
set in this property or, if the property is set to 1, the number of bitmaps assigned to
the tree view. In addition, when the user toggles a state indicator while holding
down the , all entries between the current entry and the last will be toggled to
the new state of the current entry (in effect allowing for group select/deselect).

Cascading States. If the 'CascadeState property is set to non-zero, the system
automatically cascades parent states to their children and correspondingly makes
parent states representative of all of their children. Setting a parent state, either
under program control or using the 'AutoState property in the tree view definition,
will result in all subordinate children being set to the same state.

When a child state is set, its parent state will be set according to the state of all of the
child's siblings; i.e., if all children are in a consistent state, the parent will be set to the
same state. If a parent has children of various states (some on, some off), the parents
state will be set to the value set in the 'CascadeState property.

For example, you could have three state indicators - Off (state 1), On (state 2), and
Partial (state 3). You would set 'AutoState to 2 and 'CascadeState to 3 to have
children that automatically toggle off/on and parents that will be On if all children
are on, Off if all children are off, and Partial (state 3) if the children are not in a
consistent state.

When cascading, only items with states will be affected. In addition, items without
states will not affect their parents states, nor will changing the parent of an item
without a state affect the children of that item.

Loading the Tree View. When loading an item with a state indicator into the tree view,
the item content must contain an image clause inside { } curly braces. This clause may
contain an optional image reference to be displayed next to the state image. It must
also contain a ;state_value expression for setting the initial state of the item; e.g.,

LIST_BOX LOAD tree,0,"{!Stop;2}category$+sep+name$
LIST_BOX LOAD tree,0,"{;1}parent$+sep+child$

Shift

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 175

When the Tree View is loaded, the syntax for loading an item includes
{optional_image;state_value}, allowing you to include an additional image to be
displayed next to state image. The ;state_value is required for setting the initial state
of the item.

Selection. In addition to the state indicator properties described earlier, Tree View
listboxes support the following:

Use 'SelectedChildren in conjunction with 'SelectedStateMask to return the
number of child items with the desired state. When 'SelectedStateMask is set, the
'SelectCount, 'SelectIndex, and 'SelectItem properties will reflect only those items
that have the specified state; e.g., to find all items that have a state of one, set
'SelectStateMask to 1. 'SelectCount will then indicate the number of items that
have this state and sequencing through 'SelectIndex and 'SelectItem will return
their item numbers.

Example:
! Tree view with state indicators
 PRINT 'CS'
 BUTTON 1000,@(5,20,15,2.5)="&Select items then click here"
 tree=2000
 LIST_BOX tree,@(5,3,15,15),OPT="e|A!"
 tree'StateBitmaps$="!EmptyBox|!CheckedBox|!DotInBox"
 tree'AutoState=2
 tree'CascadeState=3
 ! Load the treeview from the data statements
 WHILE 1
 READ DATA category$,name$,END=*BREAK
 LIST_BOX LOAD tree,0,"{;1}"+category$+SEP+name$
 WEND
 ! Selection loop - Select items and click 'OK'
 WHILE 1
 OBTAIN *
 IF CTL=4 \
 THEN BREAK
 IF CTL=1000 \
 THEN GOSUB Display_Selected
 WEND
 END
 !
 Display_Selected:
 tree'SelectStateMask=2
 PRINT 'LF',@(40),tree'SelectCount," total items selected",'LF',
 PRINT @(40),tree'SelectedChildren," child items selected:",'LF'
 n=tree'SelectCount

'SelectedChildren Number of child items
'SelectStateMask State filter to apply

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 176

 FOR n
 tree'SelectIndex=n
 LIST_BOX FIND tree,tree'SelectItem,item$
 READ DATA FROM item$ TO category$,name$
 IF name$<>"" \
 THEN PRINT @(40),tree'SelectItem,@(45),category$+"-"+name$
 NEXT
 RETURN
 !
 DATA "M","Tom","M","Dick","M","Harry","M","John","F","Jane"
 DATA "F","Jennifer","M","Leon","F","Stacey","F","Liz"

This example creates a Tree View with state indicators. The "!" option is required
to allow bitmaps, and, in this example, the "A" option allows selection with a single
mouse click. The Tree View has two states for the child items ('AutoState=2),
displaying either an !EmptyBox or !CheckedBox image. The third image,
!DotInBox, is used by a parent item when its children have mixed states
('CascadeState=3).

When the Tree View is loaded, the state value for each item is initialized to 1. The
selection loop allows the user to click on items, and clicking the button displays
those selected by executing a loop based on the 'SelectCount and
'SelectIndex properties. Notice that the display logic filters out the parent-only
entries and just displays the selected children.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 177

Variable List Box

VARLIST_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]
VARLIST_BOX {REMOVE|DISABLE|ENABLE} ctl_id
VARLIST_BOX {GOTO|HIDE|SHOW|AUTO} ctl_id
VARLIST_BOX SET_FOCUS ctl_id, ctl_val
VARLIST_BOX LOAD ctl_id,dlm_list$
VARLIST_BOX LOAD ctl_id,array_name${ALL}
VARLIST_BOX LOAD ctl_id,index,{element$ | *}
VARLIST_BOX FIND ctl_id,index,var$
VARLIST_BOX READ ctl_id,var$[,mode$]
VARLIST_BOX READ ctl_id,var[,mode$]
VARLIST_BOX WRITE ctl_id,element$
VARLIST_BOX WRITE ctl_id,index
VARLIST_BOX WRITE ctl_id,""

A variable list box is a Standard List Box that allows the user to select any element
from the list of items and/or enter any other value. For syntax details, refer to the
VARLIST_BOX directive in the Language Reference, p.356. For examples of how to
process a Standard list box, see List Box, p.166.

Example:

VARLIST_BOX 100,@(10,4,12,6)
VARLIST_BOX LOAD 100,"Cat/Dog/Pig/"

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 178

Drop Box DROP_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]
DROP_BOX {REMOVE|DISABLE|ENABLE|ON|OFF}ctl_id
DROP_BOX {GOTO|HIDE|SHOW|AUTO} ctl_id
DROP_BOX SET_FOCUS ctl_id,ctl_val
DROP_BOX LOAD ctl_id,dlm_list$
DROP_BOX LOAD ctl_id,array_name${ALL}
DROP_BOX LOAD ctl_id,index,{element$|*}
DROP_BOX FIND ctl_id,index,var$
DROP_BOX READ ctl_id,var$[,mode$]
DROP_BOX READ ctl_id,var[,mode$]
DROP_BOX WRITE ctl_id,element$
DROP_BOX WRITE ctl_id,index
DROP_BOX WRITE ctl_id, ""

A drop box control is similar to a Standard List Box, but the default state only
displays a single line of text. The remaining list is made available by clicking the
button. The user can select any element from a list of items you assign to the drop
box, but variable input is not allowed. For syntax details, refer to the DROP_BOX
directive in the Language Reference, p.95. For examples of how to process a
Standard list box, see List Box, p.166.

Example:
DROP_BOX 1001,@(10,8,12,6)
DROP_BOX LOAD 1001,"Cat/Dog/Pig/"
DROP_BOX WRITE 1001,"Dog"

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 179

Variable Drop Box

VARDROP_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]|
VARDROP_BOX {REMOVE|DISABLE|ENABLE} ctl_id
VARDROP_BOX {GOTO|HIDE|SHOW|AUTO} ctl_id
VARDROP_BOX SET_FOCUS ctl_id,ctl_val
VARDROP_BOX LOAD ctl_id,dlm_list$
VARDROP_BOX LOAD ctl_id,array_name${ALL}
VARDROP_BOX LOAD ctl_id,index,{element$ | *}
VARDROP_BOX FIND ctl_id,index,var$
VARDROP_BOX READ ctl_id,var$[,mode$]
VARDROP_BOX READ ctl_id,var[,mode$]
VARDROP_BOX WRITE ctl_id,element$
VARDROP_BOX WRITE ctl_id,index
VARDROP_BOX WRITE ctl_id, ""

A variable drop box normally displays a single line on the screen with a DOWN-ARROW
on the right side and allows variable input. That is, the user can select any element
from a list of items associated with the variable drop box or can enter any other value.
To view the list, the user clicks on the DOWN-ARROW. For syntax details, refer to the
VARDROP_BOX directive in the Language Reference, p.350. For examples of how to
process a Standard list box, see List Box, p.166.

Example:

VARDROP_BOX 100,@(10,6,12,6)
VARDROP_BOX LOAD 100,"Cat/Dog/Pig/"

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 180

Grid GRID ctl_id,@(col,ln,wth,ht)[,ctrlopt]
GRID {REMOVE|DISABLE|ENABLE|LOCK|UNLOCK} ctl_id
GRID {GOTO|HIDE|SHOW|AUTO} ctl_id
GRID SET_FOCUS ctl_id,ctl_val
GRID ADD ctl_id,col,row
GRID LOAD ctl_id,col,row,contents$
GRID DELETE ctl_id,col,row
GRID CLEAR ctl_id,col,row[,width,height]
GRID READ ctl_id,col,row,var$,eom$
GRID READ NEXT ctl_id,col,row,var$,eom$
GRID SELECT ctl_id,col,row[,width,height]
GRID SELECT READ ctl_id,col,row
GRID SELECT READ NEXT ctl_id,col,row
GRID SELECT RESET ctl_id
GRID FIND ctl_id,col,row,var$
GRID WRITE ctl_id,col,row,contents$

GRID

ProvideX includes the ability to create a highly-flexible and complex grid control.
Grids provide a spreadsheet-style format – basically a two-dimensional array of
editible cells in columns and rows that may comprise multi-line (default), check box,
button, drop box, or any combination of formats (each cell can be a different type).
For syntax details, refer to the GRID directive in the Language Reference, p.142. A
more simplistic version of a grid style control can be created using a Report View
style List Box, p.166.

Once it is created, much of the format and operation of a grid is handled using
different combinations of Dynamic Control Properties, p.137. Details are provided
in the sections below.

Formatting a Grid, p.181
Referencing Rows, Columns and Cells, p.182
Cell Types, p.183
Named Columns, p.186
Loading the Grid, p.186
Assigning a Row of Data, p.188
Reading Values from the Grid, p.189
Retrieving Data, p.190
Multi-Property Set/Get for Controls, p.192
Drag and Drop Properties, p.193

Example:

! Create a GRID starting at column 2 line 5, 40 characters wide.
GRID_ID=1010
GRID GRID_ID,@(2,5,40,10),FMT="[Column 1]L10 [Column 2]C10 [Column 3]R10

[Column 4]R10"
GRID_ID'COLUMN=-1 ! This selects the rows header column.
GRID_ID'COLUMNWIDTH=0 ! This sets column width to 0

Topics

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 181

GRID LOAD GRID_ID,1,1,"aaaaa"+sep+"Tom"+sep+"Edmonton"+sep+"00001"+esc
GRID LOAD GRID_ID,1,2,"bbbbb"+sep+"Dick"+sep+"Windsor"+sep+"00002"+esc
GRID LOAD GRID_ID,1,3,"ccccc"+sep+"Harry"+sep+"Regina"+sep+"00003"+esc
GRID LOAD GRID_ID,1,4,"ddddd"+sep+"Curly"+sep+"Halton"+sep+"00004"+esc
GRID LOAD GRID_ID,1,5,"eeeee"+sep+"Larry"+sep+"Ottawa"+sep+"00005"+esc
GRID LOAD GRID_ID,1,6,"fffff"+sep+"Moe"+sep+"Victoria"+sep+"00006"+esc
GRID LOAD GRID_ID,1,7,"ggggg"+sep+"Fred"+sep+"Toronto"+sep+"00007"+esc
GRID LOAD GRID_ID,1,8,"hhhhh"+sep+"Wilma"+sep+"Oshawa"+sep+"00008"+esc
ESCAPE

Formatting a Grid
When creating a grid, FMT= settings allow you to format columns by defining column
names, titles, widths, alignment and cell types. The format string consists of a
space-separated list of column definitions laid out as [col_title](cell_type:col_name$)
Alignment Width; e.g.,

"[Client ID](Multi_line:CST_ID$)L10 [Name](Normal:CST_NAME$)L10"

The column title is displayed in the column header line. Cell types include various
types of input boxes, buttons, check boxes, and drop boxes. For a full list, see Cell
Types, p.183. The default cell type is "Normal" which is a text cell containing one
line of data. The column name assigns a variable name (string or numeric) to the
column. The alignment character may be L (left), C (centred), R (right). Default: L.

It is also possible to format the grid after creation using Dynamic Control
Properties, p.137. This method allows you to format the grid by rows, columns,
individual cells, or all cells. Use of the grid 'Row and 'Column($) properties to
designate affected rows/columns/cells, then set the desired formatting properties.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 182

Referencing Rows, Columns and Cells
For some GRID syntax (e.g., GOTO, FIND keywords), both column and row
coordinates are required to act as pointers to particular cells; e.g.,

GRID GOTO GRID_ID,2,1 ! Puts focus on column 2 row 1
GRID FIND GRID_ID,3,4,val$! Retrieves value of column 3 row 4

Other syntax allows you specify a particular row or column (or the entire grid) as
well as a particular cell. To specify an entire row, set the column to 0 zero. To specify
an entire column, set the row to 0. To specify the entire grid, set both to 0; e.g.,

LIST_BOX LOAD GRID_ID,0,0,"" ! Clears the entire grid
LIST_BOX DELETE 100,0,2 ! Deletes row 2
LIST_BOX DELETE 100,3,0 ! Deletes column 3

When setting properties for rows, columns, or individual cells within the grid, 'Row
and 'Column($) properties must be specified to identify the cell(s) involved. The
special 0 zero values can be used to specify rows, columns or the entire grid; e.g.,

GRID_ID'Row=n,GRID_ID'Column=0,GRID_ID'Lock=1 ! Locks all cells in row n

There are also special values for referencing column and row headers. To reference a
column header, set row to -1. To reference a row header, set column to -1; e.g.,

GRID_ID'Column=-1,GRID_ID'ColumnWidth=0 ! Row header is now gone!

To set properties that pertain to the general behaviour of the grid control ('Auto,
'Sep$, 'LockColumns, 'LockRows, 'EnterMode, 'TabMode, 'AutoTrack, 'ExcelStyle,
'MenuCtl, etc.) the 'Row and 'Column($) values do not apply; e.g.,

GRID_ID'EnterMode=2, GRID_ID'TabMode=1, GRID_ID'AutoTrack=3

The grid in the following example is created without a FMT= string. All formatting
is handled using dynamic properties:

! GRIDDEMO - Grid demo program
BEGIN ;
PRINT 'CS',"Grid Demonstration"
GRID 10,@(3,3,75,16)
GRID LOAD 10,0,0,""
FOR R=1 TO 10
R$=""
FOR C=1 TO 5
R$+=STR(C*R)+SEP
NEXT C
GRID LOAD 10,1,0,R$
NEXT R
X=10
FOR I=1 TO 5;
X'ROW=-1,X'COLUMN=I;
X'VALUE$="Col "+STR(I);
NEXT
FOR I=1 TO 10;
X'ROW=I,X'COLUMN=-1;

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 183

X'VALUE$="Row "+STR(I);
NEXT
X'COLUMN=-1,X'COLUMNWIDTH=8
X'COLUMN=0,X'COLUMNWIDTH=15,X'ROW=0,X'LEN=7
X'COLUMN=1,X'ROW=0,X'LEN=5
X'COLUMN=2,X'ROW=0,X'LEN=10
X'COLUMN=2,X'ROW=2,X'LEN=3
X'COLUMN=2,X'ROW=0,X'BACKCOLOR$="Light Red"
X'LOCKCOLUMNS=2
INPUT X$;
IF CTL<>4 \
 THEN GOTO *SAME
END

For the complete list of dynamic properties, see Control Object Properties in the
Language Reference, p.699.

Cell Types
Several different cell types can be assigned to the GRID using the FMT= option or via
the 'Celltype$ property:
"Button", "CheckBox", "CheckBoxRaised", "CheckBoxRecessed",
"CheckMark", "CheckMarkRaised", "CheckMarkRecessed", "DropBox",
"DropBoxHideBtn", "Ellipsis", "EllipsisDrop", "Lookup",
"LookupHideBtn", "Multi_line", "Normal", "Query", "QueryHideBtn",
"SingleLine", "UseTextNormal", "UseTextSingleLine",
"UseTextEllipsis", "VarDropBox", "VarDropBoxHideBtn"

For details on these, see Cell Types in the Language Reference, p.145. While some of
these appear similar to other graphical controls, be aware that a grid will only accept
Dynamic Control Properties that are listed specifically for use in Grid controls (not

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 184

multi-lines, check boxes, buttons, drop boxes, etc.). The following example creates a
grid with "Normal", "Button", "DropBox", "Lookup", "CheckMarkRecessed",
and "DropBoxHideBtn" cell types:

BEGIN
PRINT 'CS',"Grid Demonstration"
GRID 10,@(3,3,74,15)
GRID LOAD 10,0,0,""
FOR R=1 TO 10
R$=""
FOR C=1 TO 10
R$+=STR(C*R)+SEP
NEXT
GRID LOAD 10,1,0,R$
NEXT
X=10
FOR I=1 TO 10;
X'ROW=-1,X'COLUMN=I;
X'VALUE$="Col "+STR(I);
NEXT
FOR I=1 TO 10;
X'ROW=I,X'COLUMN=-1;
X'VALUE$="Row "+STR(I);
NEXT
X'MENUCTL=11
X'COLUMN=-1,X'COLUMNWIDTH=6
X'COLUMN=2,X'ROW=0,X'LOCK=1
X'COLUMN=3,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="Button",X'LOCK=1
X'COLUMN=4,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="CheckMarkRecessed"
X'COLUMN=5,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="DropBox",X'TEXT$="car/pig/dog/"
X'COLUMN=6,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="DropBoxHideBtn", \
 X'TEXT$="car/pig/dog/"
X'COLUMN=7,X'ROW=0,X'COLUMNWIDTH=7,X'BITMAP$="!bug"
X'COLUMN=8,X'ROW=0,X'ALIGN$="C"
X'COLUMN=9,X'ROW=0,X'ALIGN$="R"
X'COLUMN=10,X'ROW=0,X'COLUMNWIDTH=10,X'CELLTYPE$="Lookup",X'BITMAP$="!Binoculars"
X'COLUMN=0,X'ROW=2,X'BACKCOLOUR$="LIGHT CYAN"
X'COLUMN=0,X'ROW=3,X'BACKCOLOUR$="LIGHT YELLOW"
X'ROW=8;
FOR I=1 TO 10;
X'COLUMN=I;
X'BACKCOLOUR$="RGB:"+STR(RND(200)+55)+" "+STR(RND(200)+55)+" "+ \
 STR(RND(200)+55);
NEXT
X'ROW=9;
FOR I=1 TO 10;
X'COLUMN=I;
X'TEXTCOLOUR$="RGB:"+STR(RND(200)+55)+" "+STR(RND(200)+55)+" "+ \
 STR(RND(200)+55);

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 185

NEXT
FOR I=1 TO 10;
X'COLUMN=I,X'ROW=I,X'FONT$="Arial,1,BI";
NEXT
WHILE 1
INPUT X$;
IF CTL=4 \
 THEN BREAK
IF CTL=11 \
 THEN POPUP_MENU "[&One=1,&Two=2,&Three=3,&Four=4]",X;
 IF X \
 THEN MSGBOX STR(X),"Menu Selection"
IF CTL<>10 \
 THEN PRINT @(0,20),'CL',"Recv'd CTL=",CTL,;
 CONTINUE
GRID READ 10,C,R,ZZ$,E$
PRINT @(0,20),'CL',"Col=",C," Row=",R," Dta=",ZZ$," Eom=$",HTA(E$), \
 "$",
WEND
END

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 186

Named Columns
Columns can be given logical names. This feature allows applications to assign
names to columns that are the same as the variables used within the underlying
application; i.e., ITEMID$,DESC$,PRICE,QTY. It also facilitates dealing with
swapped columns. Naming is handled in the FMT= clause or via dynamic
properties. The name can represent a string or numeric variable; e.g.,

GRID 10,@(10,10,60,10),
FMT="[Item](Normal:ITEMID$)L15,[Description](Normal:DESC$)L20,[Price](Nor

mal:PRICE)L12,[Qty](Normal:QTY)L10"

Dynamic properties can also be used to set column names. This is done by setting
'Row property to -1 and assigning a variable to the 'Text$ property; e.g.,

GRID 10,@(5,3,70,10) ! Define grid
X=10
X'COLUMNSWIDE=4,X'ROW=-1
X'COLUMN=1,X'VALUE$="Item",X'TEXT$="ITEMID$",X'COLUMNWIDTH=15
X'COLUMN=2,X'VALUE$="Description",X'TEXT$="DESC$",X'COLUMNWIDTH=20
X'COLUMN=3,X'VALUE$="Price",X'TEXT$="PRICE",X'COLUMNWIDTH=12
X'COLUMN=4,X'VALUE$="Qty",X'TEXT$="QTY",X'COLUMNWIDTH=10

Columns can be referenced either by column number, using the 'Column property or
by column name using the 'Column$ property. If you set 'Column$ with the name
of a variable, then internally, the column number is used as a pointer. If you read the
property 'Column, then the column number is returned. 'Column$ returns the name
of the column. Column swapping has no impact on an application that uses logical
column names to identify a column; e.g.,

X'COLUMN$="QTY",X'ROW=4,X'VALUE$="200" ! Assign cell value 200 to qty column

Loading the Grid
Once created, the grid can be updated using GRID LOAD, and GRID WRITE
directives. These, like most other GRID statements, require the specification of both
the target row and column.

All column and row specification are base 1; therefore, the top most cell is 1,1. By
default, there are also column and row headers that can be accessed by column
and/or row -1. These headers may not be included in any range specifications.

If you write to a grid when the column number is 0 zero, then all columns will be
affected by the change. If the row number is 0, then all rows will be affected by the
change. If both are 0, then all cells will be affected.

Data may be loaded into a grid in three ways, using the GRID LOAD directive,
dynamic properties, and named columns).

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 187

In order to make the load process easier, the GRID LOAD directive will accept
multiple rows and columns of data. The column data must be separated by the
character identified in the column separator in the grid creation and the rows must
be separated by the delimiter contained in the last data character of the loaded data.
Rows can also be loaded individually like a list box.

The column number and row number are used to indicate the starting point within
the grid. If both are 0, then the grid will be cleared before loading. If just the row is 0,
then the data will be appended after the last existing row on the grid. In the
following example, the entire grid is populated in a single load:

gr=1000
GRID gr,@(10,4,60,15),SEP="/"
GRID LOAD gr,0,0,""
R$="",TOTAL=0
FOR R=1 TO 10
R$+="Row"+STR(R)+"/"
FOR C=1 TO 10
R$+=STR(C*R)+"/" ! / is the column separator
TOTAL+=(C*R)
NEXT
R$=STP(R$,1,"/")
R$+=SEP ! sep is row delimiter
NEXT
GRID LOAD gr,-1,0,R$
ESCAPE

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 188

Cells in a grid may also be loaded using dynamic properties. This is done by
specifying 'Row and 'Column($) to identify the cell desired, then setting the content
using the 'Value$ property. The following code creates and loads a grid similar to the
previous example, but uses dynamic properties instead.

gr=1000
GRID gr,@(10,4,60,15),SEP="/"
gr'ROWSHIGH=10,gr'COLUMNSWIDE=10 ! define cells
R$="",TOTAL=0
FOR R=1 TO 10
gr'COLUMN=-1,gr'ROW=R,gr'VALUE$="Row"+STR(R)
FOR C=1 TO 10
R$=STR(C*R)
gr'COLUMN=C,gr'ROW=R,gr'VALUE$=R$
TOTAL+=(C*R)
NEXT
NEXT
RETURN

Assigning a Row of Data
The 'LoadList$, 'LoadIolist$ and 'RowData$ properties can be used to load rows of
data into a grid. 'LoadList$ returns a list of column names in the order in which
they physically appear within the grid object. When a grid is defined using FMT= in
the GRID directive, or columns names are assigned to columns in a grid, 'LoadList$
returns a list of those column names in their current display order. The compiled
version, 'LoadIOLIST$ simplifies the loading of grid rows from direct file contents or
other IOList-based items.

The property 'LoadList$ allows you to define the order of the columns that are
loaded from the data sent to the grid by a GRID LOAD. Historically, GRID LOAD
loads the columns in sequence; i.e., column 1, column 2, etc. Unfortunately, this
causes a problem with the ability to alter column order (swap columns). To avoid
this issue, you can define the order of the column data that is sent.

When you read this property, it returns either column order list (if previously
defined) or the column order by name as it exists currently in the grid.

The property 'LoadIOList$ contains the compiled version of 'LoadList$. The grid's
column separator ('SEP$) is included between each variable in the IOList. Using this
list enables the user to load data by record as well as overcome problems involved
with swapping columns; e.g.,

GRID LOAD Grid1,1,Row,REC(Grid1'LoadIOList$)

Note: Setting the 'Value$ property in this example is the same as doing a GRID
WRITE; therefore, gr'COLUMN=C,gr'ROW=R,gr'VALUE$=R$ could also be written
as GRID WRITE GRID_1.CTL,C,R,R$.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 189

The 'RowData$ property sets a row of data in accordance with the names defined in
the 'LoadList$. The row number must first be identified using the 'Row property; e.g.,
For example, assuming X contains the CTL value for the grid:
X'ROW=5
X'ROWDATA$=REC(X'LOADIOLIST$)
This loads the contents of the IOList into row 5. The example below loads fields from
a data file directly into the grid using field names as column names:
g=10,row=0
f1$="[Cust ID](Normal:cst_id$)L8,"
f2$="[Name](Normal:cst_name$)L30,"
f3$="[Balance](Normal:cst_amt)R10"
GRID g,@(10,3,60,12),FMT=f1$+f2$+f3$
SELECT cst_id$,cst_name$,*,*,*,*,cst_amt FROM "cstfile"
row++
g'rowshigh=row
g'row=row,g'RowData$=REC(g'LoadIolist$)
NEXT RECORD

Reading Values from the Grid
When the contents of a cell in a grid are modified, a CTL value is generated for the
event. The location and value of modified cells can be retrieved using the GRID
READ and GRID READ NEXT statements. These directives include the column and
row of the cell that has been affected by a change.

In order to assure that no change ever gets lost, all changes are placed in a READ
queue. Whenever a GRID READ request is executed, if there is additional input in the
queue, another CTL event is initiated. This ensures that, should any CTL events be
lost, the changed data will be preserved. However, it does pose a problem due to

Note: Use of this property assumes that the grid columns have been named using
proper variable names. Failure to use proper variable names will result in an invalid
IOList being returned.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 190

potential race conditions when the host is unable to keep up with the user input.
Superfluous CTL events may be received. To avoid this problem, the GRID READ
directive receives an Error #2 End of file if no data is in the READ queue.

Retrieving Data
To retrieve the contents of a single cell, the control attribute 'Value$ can be used. You
must first specify the 'Column($) and 'Row properties to identify the cell desired.

For example, where X is the CTL value.

X'Row=r,X'Column=c
CellVal$=X'Value$

To retrieve the contents of the cell which currently has focus, use the 'CurrentRow and
'CurrentColumn properties to specify the cell; e.g.,

gr'row=gr'CurrentRow,gr'column=gr'CurrentColumn
cur_value$=gr'VALUE$

The grid allows multiple cells to be selected across multiples columns and rows. To
return the contents of each selected cell, the 'SelectCount, 'SelectIndex, 'SelectRow,
'SelectColumn , 'SelectValue$ and 'SelectText$ properties can be used:

The following properties are used to access selected cells based on the location defined
by 'SelectIndex:

Example:

! Create and load the grid
gr=1000
GRID gr,@(10,4,60,15),SEP="/"
GRID LOAD gr,0,0,""
R$="",TOTAL=0
FOR R=1 TO 10
R$+="Row"+STR(R)+"/"
FOR C=1 TO 10
R$+=STR(C*R)+"/" ! / is the column separator
TOTAL+=(C*R)
NEXT

Warning: Under NOMADS, the read is handled automatically and should not be
attempted by your application.

'SelectCount Number of items/cells selected. Set to zero to de-select all.
'SelectIndex Index the selected cell. Set to point to a selected cell; e.g., set to 1 to

point at the first cell selected, 2 to point at the second cell selected, etc.

'SelectRow Row number of selected cell.

'SelectColumn Column number of selected cell.

'SelectValue$ Value within selected field.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 191

R$=STP(R$,1,"/")
R$+=SEP ! sep is row delimiter
NEXT
GRID LOAD gr,-1,0,R$
! Select some cells and click the button
BUTTON 10,@(10,20,60,2)="Highlight some grid cells and click on me"
WHILE 1
INPUT *
IF CTL=10 \
 THEN BREAK
WEND
! Display the selected cells
TotalSelected=gr'SelectCount
IF gr'RowsHigh<1 OR TotalSelected=0 \
 THEN EXIT
FOR T=1 TO TotalSelected
gr'SelectIndex=T
SLval$=gr'SelectValue$
SLcol=gr'SelectColumn
SLrow=gr'SelectRow
MSGBOX "Cell Value: "+PAD(SLval$,50)+SEP+"Column:"+STR(SLcol)+SEP+"Row: "+ \
 STR(SLrow),"Selection Item "+STR(T)+" of "+STR(TotalSelected)
NEXT T
END

The property 'RowData$ will return a row of data in accordance with the names
defined in the 'LoadList$. The row number must first be identified using the 'Row
property.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 192

For example, assuming X contains the CTL value for the grid:

X'ROW=5
READ DATA FROM X'ROWDATA$ TO IOL=X'LOADIOLIST$

This will loads the IOList with the data from row 5.

Multi-Property Set/Get for Controls
Reading more than one property at a time is not typically a problem. However, when
accessing properties across a WindX/JavX/UltraFX connection, one packet is
required for each property read. This can become a performance issue, especially
when dealing with objects that use a large number of properties (i.e., a grid).

To reduce the amount of network traffic, three special "common" properties can be
used to retrieve and set the values from multiple properties at the same time:

To retrieve the value of multiple properties, first set '_PropList$ and then read
_PropValues$; e.g.,

G1'_PropList$="CurrentColumn,CurrentRow,Value"
x$ = G1'_PropValues$

Here x$ would receive a string containing the values of CurrentColumn,
CurrentRow, and Value with each field separated by either the standard SEP field
separator, or with the '_PropSep$ character. Data can then be extracted using a
READ DATA directive, e.g.,

READ DATA FROM G1'_PropValues$ TO IOL=MYIOL
MYIOL: IOLIST Col, Row, Value$

To set values, simply set the value in '_PropValues$; e.g.,

G1'_PropValues$ = "1"+SEP+"2"+SEP+"Data" or G1'_PropValues$ =
REC(IOL=MYIOL)

The advantage here is that fewer packets will need to be sent to the thin-client for
setting or retrieving the values of multiple properties. It is important to remember
that the fields '_PropList$ and '_PropSep$ should not be constantly read from the
control in order to parse the data returned by '_PropValues$, as this will defeat the
purpose.

For example, do not...

READ DATA FROM G1'_PropValue$,SEP=G1'_PropSep$ TO IOL=CPL("IOLIST
"+G1'_PropList$)

'_PropList$ Comma separated list of property names to read/write.

'_PropValues$ String that contains values for each of the properties in _PropList$.

'_PropSep$ Character used as a field separator between values.

Note: These are considered to be "common to all" and do not appear in the list of
properties when querying a particular object (via '* tick asterisk).

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 193

This would actually result in three exchanges with WindX: one to get '_PropSep$,
one for '_PropList$, and then one for '_PropValues$.

The separator character and list should be maintained within the application code
and not retrieved from the control.

Drag and Drop Properties
The grid interface supports drag and drop functionality. Grids have four properties
that are used to support drag and drop:

When dragging off of a grid, the starting point must be a column or row header. If a
column header is used and column swapping is enabled using the 'SwapEnabled
property, then the drop target must be a control other than the grid itself. This is because
dragging a column header within the grid is the method used to swap columns.

Example:

1600 ! 1600 - Drag and drop rows from g1 (grid 1) to g2 (grid 2)
1610 ROW_DROP:
1620 LET R=G1'DRAGGEDROW; IF R<1 THEN RETURN
1630 LET G1'ROW=R
1640 READ DATA FROM G1'ROWDATA$ TO IOL=G1'LOADIOLIST$
1650 GRID DELETE G1,0,R
1660 LET R=MAX(1,MIN(G2'DROPPEDONROW,G2'ROWSHIGH))
1670 GRID ADD G2,0,R; LET G2'ROW=R
1680 LET G2'ROWDATA$=REC(G2'LOADIOLIST$)
1690 RETURN

'DraggedColumn Column where the drag started from

'DraggedRow Row where the drag started from

'DroppedOnColumn Column dropped on

'DroppedOnRow Row dropped on

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 194

Scrollbars V_SCROLLBAR ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]
V_SCROLLBAR ctl_id WINDOW [,ctrlopt]
V_SCROLLBAR {REMOVE|DISABLE|ENABLE} ctl_id[,ERR=stmtref]
V_SCROLLBAR {GOTO|HIDE|SHOW} ctl_id[,ERR=stmtref]
V_SCROLLBAR READ ctl_id,setting,max,[rgn_chg][,arrow_chg][,ERR=stmtref]
V_SCROLLBAR WRITE ctl_id,marker,max[,ERR=stmtref]

H_SCROLLBAR ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt] ...
Vertical and horizontal scrollbars are controls that can be used create a slider,
spinner, progress bar object. For syntax details, refer to the H_SCROLLBAR and
V_SCROLLBAR directives in the Language Reference.

Examples:

V_SCROLLBAR 100,@(50,2,2,20)
V_SCROLLBAR WRITE 100,5,10

H_SCROLLBAR 10000,@(5,21,40,1)
H_SCROLLBAR WRITE 10000,10,50
H_SCROLLBAR READ 10000,X,50,1,10
PRINT X
10

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 195

Chart CHART ctl_id,@(col,ln,wth,ht),[,ctrlopt]
CHART {REMOVE|DISABLE|ENABLE} ctl_id
CHART {HIDE | SHOW} ctl_id
CHART LOAD ctl_id,strvar$
CHART CLEAR ctl_id
CHART DELETE ctl_id
CHART FIND ctl_id,dataset, point,{numvar|label$}
CHART READ ctl_id, dataset,eom$
CHART WRITE ctl_id,dataset,point,{numvar|label$}

The charting control feature in ProvideX can be used to create a variety of chart
illustrations with 2D or 3D effects. This object type is generally for display purposes
only and responds to few events. Available chart types include area, bar, column,
line, pie, ribbon, scatter, and stack. For syntax details, refer to the CHART directive in
the Language Reference, p.43.

This feature requires activation of the ProvideX Charting Control add-on package.

Example:

! Chart example
 BEGIN
 PRINT 'CS',
 FOR i=1 TO 2
 GOSUB Draw_Chart
 NEXT
 INPUT @(5,22),"Press any key to end ",*,'CS',
 END
 Draw_Chart:
 IF i=1 \
 THEN c=10,x=5,format$="3DCOLUMN" \
 ELSE c=20,x=42,format$="2DCOLUMN"
 CHART c,@(x,3,32,18),FMT=format$,SEP=","
 c'indexmode=1
 c'AutoScale=0,c'font$="Arial,-10,I"
 c'BackColour$="Light Gray"
 c'LegendLocation$="Right"
 c'Title1$="Quarterly Sales",c'Title2$="for Tom, Dick and Harry"
 c'xAxisTitle$="Quarter",c'yAxisTitle$="Sales (in $1000)"
 CHART LOAD c,"Tom=500,450,250/Dick=400,250,350/Harry=100,200,300/"
 RETURN

This example creates two and three-dimensional charts, using properties to add
legends, change font and colours as well as other display attributes, as illustrated
below.

6. Graphical User Interfaces Control Objects

ProvideX User’s Guide V8.30 Back 196

6. Graphical User Interfaces Taskbar Notification Icon

ProvideX User’s Guide V8.30 Back 197

Taskbar Notification Icon
In ProvideX for Window, the BUTTON, CHECK_BOX and TRISTATE_BOX directives
(with OPT="Y" setting) can be used to place an icon in the Taskbar Notification Area (a.k.a
the System Tray) in the bottom-right corner of the MS Windows desktop.

Different aspects of this type of control may be defined, including the icon used, floating
tip, balloon information, and right mouse menu. Depending on the number of states
required, BUTTON is used to define one icon, CHECK_BOX toggles between two
different icons, TRISTATE_BOX cycles between three icons. The ability to cycle between
states is controlled using the 'Value property.

Creation Format
Apart from the fact that each directive defines a specific number of images (states),
the creation format for a taskbar notification icon is basically the same regardless of
which directive is used; e.g.,

BUTTON [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt],OPT="Y"

In the above syntax example, OPT="Y" identifies this control as an icon to be placed
in the Taskbar Notification Area. The contents$ argument defines the icon image inside
{ } braces followed by text information to be used as the title for a balloon message
(explained in the sections below). Following is an example creation command for a
single-state taskbar notification icon:

BUTTON *10,@(0,0,0,0)="{}ProvideX Tray Control",opt="Y",tip="A
Floating Tooltip",mnu=11,msg= "{pvxwin32.exe@pvxstop}This is
line 1 of a tray balloon"+$0d0a$+ "And this would be line
2"+$0d0a0d0a$+"Click on the balloon to continue"

Coordinates are ignored for taskbar notification icons. A leading * asterisk denotes it as
a "global" icon; in which case, the icon is tied to the whole ProvideX session and
remains visible no matter which window is considered current. Otherwise, the icon
is tied only to the window where it was created and is hidden/shown as necessary
when moving to a different window. See also, Other Formats, p.199.

Assigning an Icon Image
The string assigned on the creation command may contain one or more icon images
enclosed in { } braces and separated by | pipe symbols. If no icon is specified, or a
null icon is specified, then the current icon in use by the ProvideX session is used.
Only .ico images may be used in the Taskbar Notification Area. Other file formats
(.bmp, .jpg, etc.) are ignored.

Floating Tip
Floating tips may be specified by adding TIP=text$ to the creation command.

6. Graphical User Interfaces Taskbar Notification Icon

ProvideX User’s Guide V8.30 Back 198

Right Mouse Events
A CTL value may be assigned to any right mouse clicks by adding a MNU=ctl to the
creation command.

Balloon Text
Balloons may be specified via the control option MSG= during creation, or may be
changed on the fly via the 'Msg$ property. The string data may include an icon for
use within the balloon itself, as well as lines of text and other options to control
specific balloon behaviour. Format of the MSG= or 'Msg$ string is:

"{icon}text;TIM=num;QUIET;REALTIME"

Where:

Control Object Properties
Most Dynamic Control Properties will have no effect on a notification icon; i.e., you
cannot change items such as BackColour, Left, Line etc. The properties which do
have an effect are as follows:

{icon} Balloon icon. Optional, must appear before text when used. If no
braces are present, then no icon appears in the balloon. If {} (braces
with no contents) are given, then the icon currently in use by the
ProvideX session will be used. Any other icon specification follows
ProvideX's icon specification conventions. {!ERROR} , {!INFO} or
{!WARNING} define built-in icons that use the Windows standard
icons and potentially any sound associated.

text Balloon text. This may contain CRLF ($0D0A$) to specify line breaks.
The maximum length is 255 characters.

;TIM=num Time in seconds that the balloon is visible. Optional, must appear
after text when used.

Windows Restrictions. The OS controls the minimum/maximum
time (XP defaults to 10 minimum and 30 maximum). It can override
the TIM= setting; i.e., if more balloons are queued, then the display
time drops to the minimum time regardless of the setting. Also, user
(keyboard/mouse) activity may be necessary for the time to actually
count down. However, under Vista, balloon display seems to last for a
minimum of 7 seconds, and keyboard/mouse movement is no longer
required to have the time count down.

;QUIET Turns off sound associated with the balloon tip (if any). Optional,
must appear after text when used.

;REALTIME Tells the OS not to display the balloon if it cannot be displayed right
away. Optional (Vista only), must appear after text when used.

Enabled Can be read, or set to disabled (0) or enabled (1).
Eom$ Contains the character that caused the last CTL event for this control.

6. Graphical User Interfaces Taskbar Notification Icon

ProvideX User’s Guide V8.30 Back 199

Other Formats
These other formats are used to control the actions of a taskbar notification icon once
it has been created. As mentioned before, the syntax elements described below apply
to all three directives; i.e., substitute the BUTTON keyword for CHECK_BOX or
TRISTATE_BOX as required.

1. BUTTON REMOVE [*]ctl_id[,ERR=stmtref]

Deletes a global or non-global taskbar notification icon.

2. BUTTON {DISABLE | ENABLE} [*]ctl_id[,ERR=stmtref]

Enables/disables a global or non-global taskbar notification icon. When enabled,
CTL events will fire when the user clicks on the button. When disabled, all mouse
or keyboard actions on the control are ignored. The control remains visible
whether enabled or disabled.

3. BUTTON {HIDE | SHOW} [*]ctl_id[,ERR=stmtref]

Makes an icon visible or invisible.

4. BUTTON GOTO [*]ctl_id[,ERR=stmtref]

Forces focus away from ProvideX and into the taskbar notification area. The icon
will get focus and any floating tool tip will automatically be displayed.

5. BUTTON {ON | OFF} [*]ctl_id[,ERR=stmtref]

Displays the icon’s balloon when ON is used, and removes the balloon when OFF
is used. The balloons will automatically time out themselves, so it is not necessary
to use OFF unless the developer wishes to force an early close of the balloon

6. BUTTON READ [*]ctl_id,mode$[,ERR=stmtref]

Returns the EOM of the last CTL event.

Focus May be set to 1, which sets focus to this control within the
notification tray and away from the current ProvideX window.

ImageCount Returns the number of icons associated with this control.
MenuCTL Can be read or set to a CTL value that will be generated when the

user right mouse clicks on this control.
Msg$ Can be read or set to change the balloon information on the fly.
OnFocusCTL Can be read or set to a CTL value that will be generated when the

user clicks on the balloon while the balloon is visible.
Text$ Can be read or set to change the icon and text (bolded title in the

balloon).
Tip$ Can be read or set to change the floating tool tip.
Value Can be set to 1, 2 or 3 to switch between icons specified in the text

of the control (BUTTON has one icon, CHECK_BOX may have two,
TRISTATE_BOX may have three).

Visible Can be used to make the notification icon hide/show itself.

6. Graphical User Interfaces Taskbar Notification Icon

ProvideX User’s Guide V8.30 Back 200

CTL Values for Taskbar Notification Icons
CTL values will be generated when the user clicks with the mouse, or uses the
keyboard with the tray control. The events include the following:

• LEFT-MOUSE-CLICK or generates ctl_id of control, EOM=01

• LEFT-DOUBLE-MOUSE-CLICK or generates ctl_id of control, EOM=02

If the MNU=ctl option is specified on creation or the 'MenuCtl property is set:

• RIGHT-MOUSE-CLICK or RIGHT-DOUBLE-MOUSE-CLICK generates value of MNU=ctl, 'MenuCtl
property, or EOM=11.

If the MNU=ctl option is not specified or the 'MenuCtl property is not set:

• RIGHT-MOUSE-CLICK generates ctl_id of control, EOM=11

• RIGHT-DOUBLE-MOUSE-CLICK generates ctl_id of control, EOM=12

If 'OnFocusCTL property is set:

• Any click on the balloon generates value of 'OnFocusCTL property, EOM=FF

No event will be fired when clicking on the balloon if 'OnFocusCTL is not set.

Examples
The following code creates a taskbar notification tray icon:

BUTTON *10,@(0,0,0,0)="{}ProvideX Tray Control",opt="Y",tip="A
Floating Tooltip",mnu=11,msg= "{pvxwin32.exe@pvxstop}This is
line 1 of a tray balloon"+$0d0a$+ "And this would be line
2"+$0d0a0d0a$+"Click on the balloon to continue"

To display the balloon:

BUTTON ON *10

SPACEBAR

Enter

Note: When the user clicks on the notification icon or balloon, focus is not automatically
returned to the ProvideX application window. Focus remains in the taskbar notification
area, as the user may hit escape to cancel a menu selection.

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 201

Display Objects Graphical Element s

Besides the interactive Control Objects which add functionality to a GUI panel,
other graphical components are needed to help with the usability, organization, and
layout of your graphical application.

Placement and Size, p.201
Text, p.202
Images, p.203
Shapes, p.204
Display Object Sampler, p.206

These are display-only objects, such as text and labels, images, and shapes drawn on
the canvas of the graphical panel. As mentioned earlier, these types of object are
created with mnemonics (rather than directives) and have no associated events.

Mnemonics for creating graphical objects include: 'TEXT', 'FONT', 'PICTURE', 'ARC',
'PIE', 'CIRCLE', 'LINE', 'POLYGON', and 'RECTANGLE'. There is also a mnemonic for
creating a graphical group, 'IMAGE'. These objects are output on the graphic plane
via the PRINT directive. By default, PRINT outputs a line feed to the text plane unless
the statement is terminated by a trailing comma. It is therefore recommended that
the trailing comma be used when drawing graphical elements to prevent unwanted
scrolling of the text plane. For syntax details, refer to the PRINT directive in the
Language Reference, p.251.

Placement and Size

The various display objects are located on the panel using graphical units. Graphical
units are based on 1/16 of the width of a character cell. Since the size of character
cells change based on the session’s fixed base font, the size of a graphical unit will
change proportionately. Therefore, the relative location of a graphical element on a
panel will be same whether the base font is large or small. However, base fonts with
different width to height aspect ratios may result in a different value when
measuring vertically.

Unlike Interface Windows and Control Objects (which are sized by specifying
width and height in terms of columns and lines) the dimensions of graphical display
elements are determined by specifying the graphical coordinates of the vertices that
define the element. For example, text areas and rectangles are defined by specifying
an x/y coordinate for the top left corner and another for the bottom right.

Horizontal and vertical graphical units are consistent, such that a rectangle drawn
from 0,0 to 100,100 will form a square. Shapes such as arcs, pies and circles are
defined by specifying the x/y coordinate for the centre of the shape and a radius
measured in graphical units.

Topics

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 202

@x() and @y() Functions
When programming, it is not obvious how many graphical units represent a
particular location. (The top left corner of the panel is location 0,0.) Therefore,
ProvideX includes two system functions to convert the more familiar line and
column locations into graphical units. The @x() function returns the x-axis
graphical coordinate of a given column, and @y()returns the y-axis graphical
coordinate of a given line. For syntax details, see @X() / @Y() in the Language
Reference, p.389.

The values passed to these functions can be fractional, but the return value will be an
integer representing the number of graphical units. Because fractional values may be
passed to these functions, they can be used to locate graphical display elements in
precise locations on the panel.

MXC() and MXL() Functions
To determine the width and height of a panel in graphical units, you can use the
MXC() and MXL() functions in conjunction with @x() and @y(); e.g.,

PRINT @X(MXC(0)+1) ! Width of panel in graphical units
1280
PRINT @Y(MXL(0)+1) ! Height of panel in graphical units
844
While the number of horizontal graphical units for a panel 80 columns wide will
remain consistent, the number of vertical graphical units for a panel 25 lines high
may differ based on the width:height ratio of the base font. For syntax details, see
MXC() / MXL() in the Language Reference, p.486.

Text Plain text (i.e., output to the text plane) can be displayed on a graphical panel, but
placement is restricted to lines and columns, and the font is restricted to the session's
fixed text plane font. It is therefore more common to draw text in graphics mode
when displaying text on a graphical panel. Location of the text can be defined with
precision, and any available font can be utilized. To draw text in graphics mode, the
'FONT' mnemonic is used to control the font, and the 'TEXT' mnemonic is used to
locate and display the text.

'FONT'(name$,size[,attrib$[,angle]]
Defines the current font and specifications. The font specified by the font name$
must exist on the system or the default system font is used. Optional size values may
be positive or negative. Positive font sizes are relative to the current default, e.g. .5
for half size, 2 for double, etc. Negative font sizes are used for absolute font size in
points. The optional attrib$ string is composed of codes:

& Underscore the character following the '&' (as in hot keys)
B Bold
C Centre text
F Show focus lines around text
I Italics
N Numeric data alignment

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 203

R Right justify text
S Applies background colour to area directly behind text.
U Underscore ("_")
W Word wrap
Same as N

For syntax details, see the 'FONT' mnemonic in the Language Reference, p.607.

Examples:
PRINT 'FONT'("Courier New"),
PRINT 'FONT'("Verdana",1,"BR"),
PRINT 'FONT'("Arial",-12,"CI"),

'TEXT'(x,y[,x,y],text$,attrib$)
Draws text in graphics mode. The first set of x/y graphical coordinates provide the
starting point (top left corner) of the text. The optional second set of x/y coordinates
define the bottom right corner of a rectangular region for displaying the text. The
second set of coordinates are necessary to centre, right justify or word-wrap the text.
The optional attribute string is composed of codes that include:

& Underscore the character following the '&' (as in hot keys)
C Centre text
F Show focus lines around text
N Numeric data alignment
R Right Justify
S Applies background colour to area directly behind text.
W Word wrap
Same as N

For syntax details, see the 'TEXT' mnemonic in the Language Reference, p.640.

Examples:
PRINT 'FONT'("Arial",-11),
PRINT 'GREEN','TEXT'(@x(2),@y(3),"&Hello","&"),
PRINT 'TEXT'(@x(2),@y(4.5),@x(15)@y(6),T$,"R"),

The TXH() and TXW() functions can be used to determine the size of the text to be
displayed. For syntax details, see TXH()/TXW() in the Language Reference, p.542.

Images The 'PICTURE' mnemonic is used to draw a picture on the panel.
'PICTURE'

'PICTURE'(x,y,x,y,{name$|#chan[,transp_opt]}[,display_opt])
The images can be bitmaps, or with the ProvideX Multiple Image Support add-on,
other image formats (gif, jpg, png, tif, etc.). A number of display options are available:

0=Align at top-left
1=Centre/crop within region
2=Scale to fit
3=Tile bitmaps to fill the given area
4=Halftone for enhanced legibility (may lighten black images)
5=Scale with proper aspect ratio but output in top left
6=Scale with proper aspect ratio but centred in the region.

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 204

For options 0, 1, and 3, the image is cropped to fit within the specified region on the
screen. When scaling an image, options 5 and 6 are recommended when it is
important that the aspect ratio be maintained and the picture is not to be stretched
unnaturally. If it is not important to maintain the aspect ratio when scaling, option 4
generally results in a cleaner image than option 2; e.g.,

PRINT 'PICTURE'(0,0,@X(MXC(0))+1,@Y(7),"people.bmp",4),

For syntax details, see the 'PICTURE' mnemonic in the Language Reference, p.640.

Shapes The graphical shapes that are available to ProvideX include the arc, pie, circle, line,
rectangle and polygon. All of these shapes use the current attributes for the 'PEN'
and 'FILL' mnemonics to determine their outline and fill characteristics.

'PEN' (style,width,colour)
Defines the pen style to outline subsequently drawn shapes. Styles include 0=No
pen, 1=Solid pen, 2=Dashed line, 3=Dotted line, 4=Dash-dot, 5=Dash-dot-dot.
Width is in graphical units. Colour can be a colour code (0-15) or name of one of the
ProvideX standard colours, the name of a user-defined colour, or an RGB setting
(RGB: n n n). ProvideX colour codes/names are as follows:

0 - Black 8 - Dark Gray
1 - Light Red 9 - Dark Red
2 - Light Green 10 - Dark green
3 - Light Yellow 11 - Dark Yellow
4 - Light Blue 12 - Dark Blue
5 - Light Magenta 13 - Dark Magenta
6 - Light Cyan 14 - Dark Cyan
7 - White 15 - Gray

For syntax details, see the 'PEN' mnemonic in the Language Reference, p.628.

Examples:
PRINT 'PEN'(1,10,6),
PRINT 'PEN'(1,1,"RGB: 192,192,192"),
PRINT 'PEN'(0,3,"Light Red"),

'FILL' (pattern,colour1[,colour2])
Defines the fill pattern to be used with subsequently drawn shapes. Two types of fill
patterns are available, standard and gradient fill patterns.

Standard patterns include 0=No fill, 1=Solid fill, 2=Horizontal lines, 3=Vertical lines,
4=Crossed lines, 5=Diagonal bottom left to top right, 6=Diagonal top left to bottom
right, 7=Diagonal crossed lines. Patterns 4 and 7 require two colours to be specified,
the first for the lines and the second for the background.

Note: The current 'PEN' and 'FILL' settings are reset after a 'CS' mnemonic (clear
screen) has been output.

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 205

Gradient patterns include 2=Top to bottom, 3=Left to right, 5=Top left to bottom
right, 6=Bottom left to top right. Two colours must be specified for a gradient
pattern, with the direction being derived from the code.

Colours can be a colour code (0-15) or name of one of the ProvideX standard colours (see
'PEN' above), the name of a user-defined colour, or an RGB setting (RGB: n n n). If a
second colour is specified, then both colours must be specified using the same format.

For syntax details, see the 'FILL' mnemonic in the Language Reference, p.605.

Examples:
PRINT 'FILL'(1,"RGB: 192,192,192"),
PRINT 'FILL'(0,"Light Red"),
PRINT 'FILL'(3,"UserColour32","UserColour51"),

'ARC'(x,y,radius,aspect,angle_1,angle_2)
Draws an arc centred at the given x and y graphical coordinates with the specified
radius (also in graphical units) that extends from starting angle_1 to angle_2. If an
aspect ratio other than 1 is specified, then the arc is tilted into an elliptical shape.
Since an arc is not a closed figure, fill patterns do not apply. For syntax details, see
the 'ARC' mnemonic in the Language Reference, p.584.

Example:
PRINT 'PEN'(1,2,1),'ARC'(400,200,100,1,0,120),

'PIE'(x,y,radius,aspect,angle_1,angle_2)
Draws a pie slice centred at the given x and y graphical coordinates with the
specified radius (also in graphical units) that extends from starting angle_1 to
angle_1. If an aspect ratio other than 1 is specified, then the arc is tilted into an
elliptical shape. For syntax details, see the 'PIE' mnemonic in the Language Reference,
p.630.

Example:
PRINT 'PEN'(0,0,0),'FILL'(1,3),'PIE'(400,200,100,1,45,0),

'CIRCLE'(x,y,radius,aspect)
Draws a circle centred at the given x and y graphical coordinates with the specified
radius (also in graphical units). If an aspect ratio other than 1 is used, then the circle
is tilted into an elliptical shape. For syntax details, see the 'CIRCLE' mnemonic in the
Language Reference, p.594.

Example:
PRINT 'PEN'(1,3,1),'FILL'(2,6),'CIRCLE'(224,450,90),

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 206

'LINE'(x1,y1,x2,y2 [,x,y…])
Draws a line (or lines) joining the sequential pairs of x and y graphical coordinates.
Fill patterns do not apply to lines. For syntax details, see the 'LINE' mnemonic in the
Language Reference, p.616.

Example:
PRINT 'PEN'(1,3,1),'LINE'(0,@y(5),@x(80),@y(5)),

'POLYGON'(x,y,x,y,x,y…)
Draws a polygon by drawing joining the sets of x/y graphical coordinates. For syntax
details, see the 'POLYGON' mnemonic in the Language Reference, p.631.

Example:
PRINT 'PEN'(1,3,8),'FILL'(2,6),
PRINT 'POLYGON'(224,450,100,100,400,200,390,390),

This example creates an irregular four-sided figure by setting the coordinates for the
four corners.

'RECTANGLE'(x1,y1,x2,y2, [radius])
Draws a rectangle defined by two sets of x/y graphical coordinates. An optional
radius may be specified as a rounding factor for the corners. For syntax details, see
the 'RECTANGLE' mnemonic in the Language Reference, p.633.

Example:
PRINT 'PEN'(1,3,8),'FILL'(4,6,8),
PRINT 'RECTANGLE'(100,100,400,600),
PRINT 'RECTANGLE'(700,100,820,220,30),

Display Object Sampler

Following is some simple code to illustrate the variety of GUI Display Objects.

PRINT 'DIALOGUE'(0,0,80,25,"Shapes"),'SR','CS',
panelWidth=@X(MXC(0)+1)
panelHeight=@Y(MXL(0)+1)
PRINT 'PICTURE'(0,0,panelWidth,@Y(7),"people.bmp",4),
PRINT 'PEN'(0,0,0),'FILL'(2,4,6),
PRINT 'RECTANGLE'(0,@Y(7),panelWidth,panelHeight),
PRINT 'FONT'("Arial",3,"BI"),
PRINT 'TEXT'(@X(2),@Y(9.5),"Shapes"),
PRINT 'PEN'(1,3,2),
PRINT 'ARC'(@X(10),@Y(18),@X(5),1,0,180),
PRINT 'PEN'(1,2,3),'FILL'(1,3),
PRINT 'PIE'(@X(25),@Y(18),@X(5),1,25,340),
PRINT 'PEN'(1,1,0),'FILL'(2,2,10),
PRINT 'CIRCLE'(@X(40),@Y(18),@X(5),1),
PRINT 'PEN'(1,3,5),
PRINT 'LINE'(@X(50),@Y(15),@X(60),@Y(15),@X(50),@Y(21), @X(60),@Y(21)),
PRINT 'PEN'(1,3,7),'FILL'(4,7,1),

6. Graphical User Interfaces Display Objects

ProvideX User’s Guide V8.30 Back 207

PRINT 'POLYGON'(@X(65),@Y(18),@X(68),@Y(15),@X(72),@Y(15), \
 @X(75),@Y(18),@X(72),@Y(21),@X(68),@Y(21)),
OBTAIN *

PRINT 'POP',

6. Graphical User Interfaces Example Programs

ProvideX User’s Guide V8.30 Back 208

Example Programs
This section provides you with some working program code to illustrate the creation
and implementation of ProvideX GUI controls and display objects.

GUI Program, p.208
Form Input Program, p.210

GUI Program
Following is a short program for demostrating use of ProvideX Control Objects. It
draws a new window within the ProvideX console, then creates several interactive
controls within that window. At runtime, a message on the right will display the
CTL value assigned to each control selected via the mouse.

! Sample GUI program
! Create window and populate with controls
 PRINT 'DIALOGUE'(10,10,80,25,"Simple Gui Example",OPT="*-mXM"),'B?','SR','CS',
 PRINT 'FONT'("Arial,1,I"),'DF',
 MENU_BAR

100,"-[&File,&Edit],F:[&Open=901,&Save=902,&Quit=4],E:[&Add=903,&Delete=904]"
 BUTTON 101,@(3,1,10,2)="&Button",TIP="Push the button"
 PRINT 'PEN'(1,1,"Dark Blue"),'FILL'(0,0),;
 PRINT 'RECTANGLE'(@X(2),@Y(3.5),@X(23.5),@Y(9),20),
 RADIO_BUTTON 102:1,@(3,4,20,1.5)="Radio Button 1",FNT="Arial,1"
 RADIO_BUTTON 102:2,@(3,5.5,20,1.5)="Radio Button 2",FNT="Arial,1"

Topics

6. Graphical User Interfaces Example Programs

ProvideX User’s Guide V8.30 Back 209

 RADIO_BUTTON 102:3,@(3,7,20,1.5)="Radio Button 3",FNT="Arial,1"
 RADIO_BUTTON ON 102:1 ! Turn the default button on
 CHECK_BOX 103,@(3,9.5,20,1)="Check box",FNT="Arial,1"
 PRINT 'PEN'(1,2,0),'LINE'(@X(2),@Y(11.5),@X(23.5),@Y(11.5)),
 PRINT 'TEXT'(@X(3),@Y(12.5),"Double click to select:"),
 LIST_BOX 104,@(3,14,20,6);
 LIST_BOX SET_FOCUS 104,204 ! set alternate CTL for focus
 LIST_BOX LOAD 104,"Line 1/Line 2/Line 3/Line 4/Line 5/"
 LIST_BOX WRITE 104,1
 PRINT 'TEXT'(@X(3),@Y(19.5),@X(20),@Y(22),"Type some text and press <ENTER>:","W"),
 PRINT 'PEN'(1,3,"RGB: 100 200 200"),'LINE'(@X(26),0,@X(26),@Y(25)),
 MULTI_LINE 105,@(3,22,20,1);
 MULTI_LINE SET_FOCUS 105,205 ! set alternate CTL for focus
 ! Initialize
 CtlMsg$="",Event$=""
 Lo_CTL=101,Hi_CTL=105,Current_ID=Lo_CTL;
 SET_FOCUS Current_ID ! init focus
 ! Event Loop
 WHILE 1
 SET_FOCUS READ x;
 IF x \
 THEN Current_ID=x \
 ELSE SET_FOCUS Current_ID ! Keep focus on the controls
 OBTAIN (0,SIZ=1)'ME',*,'MN';
 TheCTL=CTL
 IF TheCTL=4 OR TheCTL=-1999 \
 THEN BREAK ! Exit the loop by pressing F4 or X in top corner of window
 CtlMsg$="Ctl Value: "+STR(TheCTL),Event$=""
 SWITCH TheCTL
 CASE 101 ! Button
 Event$="The button has been pressed"
 BREAK
 CASE 102 ! Radio button
 RADIO_BUTTON READ 102,SUB_ID
 CtlMsg$="Ctl Value: "+STR(TheCTL)+" Sub_ID: "+STR(SUB_ID)
 Event$="A radio button has been selected"
 BREAK
 CASE 103 ! Checkbox
 Event$="The check box has been clicked"
 BREAK
 CASE 104 ! Listbox
 LIST_BOX READ 104,x$,mode$
 IF mode$=$02$ \
 THEN Event$=x$+" has been selected from the list box" ! Select only by double

click
 BREAK
 CASE 105 ! Multiline
 MULTI_LINE READ 105,x$
 Event$="'"+x$+"' has been typed into the multiline"
 BREAK
 CASE 204,205 ! Keep track when focus is on a listbox or multiline
 Current_ID=TheCTL-100

6. Graphical User Interfaces Example Programs

ProvideX User’s Guide V8.30 Back 210

 BREAK
 CASE 901,902,903,904
 x=TheCTL-900;
 MenuFunc$=TBL(x,"Unknown","Open","Save","Add","Delete")
 Event$="'"+MenuFunc$+"' has been selected from the menu"
 BREAK
 CASE -1015 ! Tab forward
 Current_ID++;
 IF Current_ID>Hi_CTL \
 THEN Current_ID=Lo_CTL
 SET_FOCUS Current_ID
 BREAK
 CASE -1016 ! Shift-Tab backward
 Current_ID--;
 IF Current_ID<Lo_CTL \
 THEN Current_ID=Hi_CTL
 SET_FOCUS Current_ID
 BREAK
 DEFAULT
 Event$=""
 END SWITCH
 PRINT @(30,12),CtlMsg$,'CL',@(30,13),"Focus:

",Current_ID,'CL',@(30,14),Event$,'CL',
 WEND
 ! The end
 PRINT 'CS',"Gogui.pgm example complete"
 END

Form Input Program
Following is a simple form input program.

 BEGIN
 PRINT 'DIALOGUE'(0,0,33,15,"Input Form",'B?'+'FONT'("Arial,1")), \
 'SR','CS',
 PRINT 'CURSOR'("OFF"),
 PRINT 'TEXT'(@X(2),@Y(3),"First Name:"),
 PRINT 'TEXT'(@X(2),@Y(5),"Last Name:"),

6. Graphical User Interfaces Example Programs

ProvideX User’s Guide V8.30 Back 211

 PRINT 'TEXT'(@X(2),@Y(7),"Address:"),
 PRINT 'TEXT'(@X(2),@Y(9),"City:"),
 MULTI_LINE 100,@(15,3,15,1),LEN=15,OPT="",ERR=*NEXT
 MULTI_LINE 200,@(15,5,15,1),LEN=15,OPT="",ERR=*NEXT
 MULTI_LINE 300,@(15,7,15,1),LEN=15,OPT="",ERR=*NEXT
 MULTI_LINE 400,@(15,9,15,1),LEN=15,OPT="",ERR=*NEXT
 BUTTON 500,@(15,11,6,2)="&Save"
 BUTTON 600,@(24,11,6,2)="&Done"
 SET_FOCUS 100
 tab_list$="100200300400"
 !
 WHILE 1
 OBTAIN (0)'ME',invar$,'MN';
 got_ctl=CTL,got_eom$=EOM
 SWITCH got_ctl
 CASE 4,600,-1999;
 EXITTO DONE
 CASE -1015;
 tab_list$=tab_list$(4)+tab_list$(1,3);
 SET_FOCUS NUM(tab_list$(1,3));
 BREAK
 CASE -1016;
 tab_list$=MID(tab_list$,-3)+tab_list$(1,LEN(tab_list$)-3);
 SET_FOCUS NUM(tab_list$(1,3));
 BREAK
 CASE 500;
 GOSUB SAVE_ROUTINE;
 BREAK
 END SWITCH
 WEND
 !
 DONE:
 MULTI_LINE REMOVE 100
 MULTI_LINE REMOVE 200
 MULTI_LINE REMOVE 300
 MULTI_LINE REMOVE 400
 BUTTON REMOVE 500
 BUTTON REMOVE 600
 PRINT 'CS',
 END
 !
 SAVE_ROUTINE:
 MULTI_LINE READ 100,first$
 MULTI_LINE READ 200,last$
 MULTI_LINE READ 300,address$
 MULTI_LINE READ 400,city$
 MSGBOX "Saving: "+SEP+"First: "+first$+SEP+"Last: "+last$+SEP+ \
 "Addr: "+address$+SEP+"City: "+city$
 RETURN

6. Graphical User Interfaces NOMADS

ProvideX User’s Guide V8.30 Back 212

NOMADS NOMADS

As mentioned, the easiest (and fastest) method for creating a graphical user interface
in ProvideX is to use NOMADS (Non-procedural Object Module Application Development
System). Following is an introduction to the tools and functionality of NOMADS. For
complete documentation on the topics discussed below, refer to the ProvideX
NOMADS manual. For information on building GUI components at the language
level, see Control Objects, p.150, and Display Objects, p.201.

NOMADS is an application development facility that can be used in conjunction
with ProvideX and other languages to create GUI applications. It also includes the
ability to separate data, logic, and presentation text and images within the
applications. A common data dictionary provides the ability to view and maintain
data files without having to write any application code. NOMADS also allows for
the integration of both NOMADS-designed applications with non-NOMADS
designed applications.

Development Environment

The toolset side of NOMADS provides an integrated working environment for
building and assembling object definitions for the panels, dialogues, and windows to
be used in your GUI application. These definitions are stored in keyed data files
called libraries, which are accessed for editing via the Library Object Selection
console.

6. Graphical User Interfaces NOMADS

ProvideX User’s Guide V8.30 Back 213

When you develop components in NOMADS, the bulk of the programming is
handled for you. Instead of typing lines of code in ProvideX to define size,
placement, and functionality, you simply draw the objects using your mouse, then
select the desired attributes from associated dialogues and menus.

The NOMADS Panel Designer is the main work area in NOMADS for designing panel
layoutS and for drawing and defining Control Objects.

NOMADS Engine
*winpr ocAt the heart of NOMADS is a powerful runtime engine, *winproc. This is the central

controller that operates in ProvideX behind the scenes to process the information
stored in library objects, generate GUI components, and execute associated
event-handling logic. Your ProvideX application requires a PROCESS directive to run
NOMADS-based components. At runtime, ProvideX converts this statement into a
CALL to *winproc, which then generates the GUI for your ProvideX application.

6. Graphical User Interfaces NOMADS

ProvideX User’s Guide V8.30 Back 214

Dictionary-Based Development

NOMADS includes a set of Rapid Application Development (RAD) tools that can be
used to easily create an integrated File Maintenance and Query system without
writing a single line of code. These tools use the file and field definitions set up in a
data dictionary, to create new applications or to convert existing legacy systems.

Data Dictionary Maintenance
The Data Dictionary Maintenance interface allows you to define data files by
entering all the pertinent information for the elements (e.g. variable name, type,
length, delimiter, etc…). Once this information is entered, the individual data
dictionary information is embedded into the file, as well as written to the definition
files, providex.ddf and providex.dde.

To access the interface for building and maintaining data dictionary definitions, select
Dictionary > Maintenance from the menu bar on the NOMADS Session Manager.

Alternately, you can type DD (or DD tablename) at the ProvideX Command prompt.
Refer to the ProvideX Data Dictionary manual for detailed documentation on the
Data Dictionary Maintenance interface.

File Maintenance Generator
File Maintenance

Using this facility, you can automatically generate file maintenance panels with
built-in editing and browse functionality based on data files defined in an embedded
data dictionary.
Options are provided to create a single panel or a panel with multiple folders, to
place edit and browse buttons at the bottom or side of the panel, to determine
whether acknowledgement and confirmation messages are to be displayed, and to
determine what update logic should be used.
The following file maintenance panel was auto-generated using this facility.

6. Graphical User Interfaces NOMADS

ProvideX User’s Guide V8.30 Back 215

Query Panel Generator
Query

A query object in NOMADS consists of a panel that displays records from a data file and
returns a value associated with a record selected by the user. Query objects may be based
on an existing data dictionary definition, an ODBC data source, or a manually-defined
file with no embedded dictionary.
The panels created using this facility are designed so that users can enter a starting point
or switch to a maintenance program or sub-query, print a hard copy of the record list,
select a different sort key, or switch to the record display area; e.g.,

6. Graphical User Interfaces NOMADS

ProvideX User’s Guide V8.30 Back 216

ProvideX User’s Guide V8.30 Back 217

User’s Guide 7
 Printing

PRINT (?) is described in Chapter 5 as the directive for formatting and displaying
data at the console (screen, display). However, as the keyword suggests, PRINT can
also be used to render text and images on paper using a hardcopy device (printer).
Actually, the definition of "printing" is not limited to hardcopy format. In ProvideX
this can mean any process by which the data (reports, documents, or images) are
sent to an output destination (device, interface, or file format). This chapter explains
the various aspects of "printing" in ProvideX.

Printing in MS Windows, p.221
Graphical Printing, p.226
Character-Based Printing, p.227
Print Drivers and Link Files, p.230
Logical Printers, p.233
Report Writer, p.236
Printing via Thin-Clients, p.238

Int roduction

Unless the output is intended for immediate display, a PRINT statement must include
a valid channel number to indicate a destination other than the ProvideX console.
Channels are established using an OPEN directive, which identifies the connection to
a specific device, interface, or file. See Opening/Closing Devices and Files, p.87.

PRINT

Printing requires the use of both the OPEN directive and the PRINT directive:

Printing Options
The ProvideX environment is designed for graphical application development,
platform and device independence, and for the migration of older code to newer
technologies. As a result, it comes equipped with a variety of PRINT Destinations to
accommodate a broad range of application printing requirements.

Topics

OPEN to assign a channel number to an output destination
PRINT to format and direct output data to the destination defined via OPEN.

7. Printing

ProvideX User’s Guide V8.30 Back 218

ProvideX allows you to control all the steps in the printing process, but the end
result is contingent on which method is used and on how the different parts work
together. So how do you determine which tools are right for the job?

It is important that you understand the capabilities, limitations and the intended
purpose of the different printing methods before you try to incorporate them into
your ProvideX application:

• If your ProvideX application is designed run in Microsoft Windows, then you
should be able to handle most hardcopy printing tasks using the standard
Windows printer interface *WINPRT*. Output may be controlled using various
Graphical Mnemonics and through defaults established by the WINPRT_SETUP
directive. See Printing in MS Windows, p.221.

• Legacy or converted character-based programs can use *WINPRT* just as easily,
provided they are running under Windows. However, output that requires
direct-to-device access (via raw escape sequences) should be sent to the *WINDEV*
interface instead. See Character-Based Printing, p.227.

• UNIX/LinuX-based ProvideX programs can access either *WINPRT* or
WINDEV via WindX. If you are printing over a network print spooler or use a
local port connection, the specific UNIX/Linux print routines may be maintained
using custom print drivers and link files (explained in the next point).

• When your application has specific output requirements that need to be
customized for different environments and/or multiple devices, then you should
make use of a custom print driver. This is a basic ProvideX file that allows you to
maintain initialization code, mnemonics, and device-specific control sequences
outside your application. Devices, device drivers, and other settings can be easily
maintained (and are interchangeable) when defined using a link. See Print Drivers
and Link Files, p.230

• PRINT Destinations are not limited to hardcopy. ProvideX has an extensive list of
output choices, which include the generation of HTML, 24-bit colour bitmap
images, PDF-compatible files, and the Print Preview facility. These are described
under Logical Printers, p.233.

• Under WindX, *WINPRT* and *WINDEV* interfaces are accessible on the Windows
system that issues the command. The [WDX] prefix is required to ensure that print
jobs and dialogues are directed to the client. JavX and UltraFX thin-clients do not
have access to local print facilities; however, PDFs may be created on the client
machine, which can then be directed to the appropriate local printer. See Printing
via Thin-Clients, p.238.

7. Printing

ProvideX User’s Guide V8.30 Back 219

Character-Based versus Graphical Printing

In Chapter 4, the PRINT directive is first introduced within the context of a
character-based implementation of ProvideX. This is also referred to as character
mode, and it defines syntax elements for generating line-oriented output on both the
printer and screen.

By default, character-based PRINT statements will only advance by one line at a time
when they print to the page. Automatic advance can be overridden by placing a
hanging comma after the statement. *WINPRT* has been designed to minimize
changes to existing text-based applications and allow virtually any printer to be
used. For more information, see Character-Based Printing, p.227.

Graphical mode in ProvideX takes the original character mode behavior and has
added syntax elements that are capable of graphical, page-oriented output. This
implementation is ideally suited for GUI (graphical user interface) applications and
is designed for sending graphical data to a Windows printer.

PRINT Destinations

Physical printers, printer interfaces, and output files can all be classified as PRINT
destinations in ProvideX, if they are made available for use (in an OPEN statement).
There are several options for defining how and where and in which format the
output will be sent.

Most of the PRINT destinations listed below are discussed in further detail later in
the chapter. Syntax options for logical file names (i.e., *WINPRT*, *PDF*...) are
provided in the Language Reference, Chapter 8.

Note: Character and graphical mode methods may be mixed to produce desired
output; however, be careful to ensure that the mixed elements are compatible. For
example, using 'FONT' and 'DEFAULT' or 'DF' mnemonics to change character mode
fonts can affect the x/y positioning of graphical output.

WINPRT Enables standard API access to the Windows print subsystem/spooler
(WindX or Windows only); e.g.,

OPEN (1)"*WINPRT*"

This provides access to the standard Windows Printer dialogue for both
graphical and character-based data; however, raw escape sequences are
not permitted in graphical printing. For raw printing, see *WINDEV*.
Use the WINPRT_SETUP directive to establish default printing options
for the Windows printer; i.e., paper size, margins, copies, etc. For more
information, see Printing in MS Windows, p.221.

7. Printing

ProvideX User’s Guide V8.30 Back 220

WINDEV Sends character-based data to the Windows print subsystem/spooler
(WindX or Windows only); e.g.,

OPEN (1)"*WINDEV*;HP Laser Jet on \\Main_Server\HPLaser"

This permits the Windows equivalent of sending data to a directly-
connected printer. It provides an interface to the Windows API in a
pass-through mode that accepts raw data and device-specific escape
sequences. For more information, see Raw Printing, p.228. For
graphical printing, use *WINPRT*.

PDF Generates a PDF file from ProvideX output; e.g.,

OPEN (1) "*pdf*;FILE=/tmp/pvx.pdf; FORM=Letter:8.5in:11in"

If the file name is omitted, a dialogue appears for users to specify the
path, PDF name, and properties. See Logical Printers, p.233.

VIEWER Allows users to preview reports (Windows/WindX);

OPEN (CHAN)"*VIEWER*"

This renders output to a screen "viewer" exactly as it would print out
in hardcopy format via *WINPRT*. See Logical Printers, p.233.

BITMAP Generates 24-bit colour bitmap images in memory (WindX or Windows
only); e.g.,

OPEN (12)"*bitmap*"; PRINT 'CS'

BITMAP contents can be accessed via the 'PICTURE' mnemonic and
the SAVE FILE directive. See Logical Printers, p.233.

HTML Generates HTML-formatted reports; e.g.,

OPEN (1,OPT="FILE=Sample.htm;SHOW;FONT=Courier
New;TITLE=Sample;BACK=FFFFFF;TEXT=000000")"*HTML*"

Reports that are formatted using normal fixed fonts may be read using
any HTML viewer (browser). The system prompts for a file name to
store the resulting HTML document. See Logical Printers, p.233.

UNC Name Specifies the location of a shared server/printer on the network
(WindX or Windows only); e.g.,

OPEN (1)"\\Print_Server\HP_Laser"

The output device can be any shared resource that is identified via
Universal Naming Convention. This format accepts raw data along with
printer escape sequences, but does not support graphical printing.

LPT Access Specifies the port number of a directly-connected printer device; e.g.,

OPEN (1)"*LPT1*"

This format accepts raw data along with printer escape sequences, but
does not support graphical printing. See Raw Printing, p.228.

7. Printing Printing in MS Windows

ProvideX User’s Guide V8.30 Back 221

Printing in MS Windows
ProvideX for Windows include two logical device names for accessing Windows
printers: *WINPRT* and *WINDEV*. When used in an OPEN statement, these
devices will invoke the print subsystem API at runtime. Logical device names for
printing to file types in Windows are described under Logical Printers, p.233.

The standard interface, *WINPRT*, is designed to handle typical hardcopy print
requests. It allows your application to print any variety of character and graphical
output (i.e., bitmap images and proportional fonts) and employ a full suite of PRINT
options and mnemonics.

WINDEV supports the direct-to-device printing methods associated more with
legacy and/or converted applications. This interface accepts the raw print escape
sequences that are otherwise ignored in the Windows print system. It sends output
using a pass-through mode, which tells the printer driver to read the raw data and
queue the job. For more information, see Raw Printing, p.228.

This section focuses on the access and control of hardcopy print destinations from
ProvideX in Windows (and WindX), primarily through *WINPRT* and *WINDEV*.

Selecting a Printer

When *WINPRT* (or *WINDEV*) are used in an OPEN statement without options or
queue names, the user will be presented with the default Windows print manager
selection dialogue at runtime; e.g.,

OPEN (1)"*WINPRT*"

If a print queue name is specified along with *WINPRT* (or *WINDEV*), then the
dialogue will not be displayed and output is sent to the printer automatically at
runtime. To assign a specific printer, use the print queue's name as it appears in the
Printers folder of the Control Panel on the local system (this is assigned to the printer
when it is first installed on the OS). Omit any mention of ports. For instance, if the
Control Panel folder records the name as HP LasertJet on LPT1, simply use HP
LaserJet as the queue name in your directive; e.g.,

OPEN (1)"*WINPRT*;HP LaserJet"
OPEN (2)"*WINPRT*;Bills Desk - Canon;orientation=landscape;copies=3"
OPEN (3)"*WINDEV*;HP LaserJet;copies=2"

ASIS
Use the ASIS keyword to access the most recently selected printer and its previous
settings. All settings for queue options will be identical to the previous selection.
Users do not have access to the printer selection dialogue at runtime and cannot alter
the settings; e.g.,

OPEN (2)"*WINDEV*;ASIS"

7. Printing Printing in MS Windows

ProvideX User’s Guide V8.30 Back 222

WINPRT allows you to override printer settings with the ASIS option, but the
changed properties must be valid for the appropriate driver.

OPEN (1)"*WINPRT*;ASIS;copies=5;offset=500:500"
OPEN (2)"*WINPRT*;ASIS;file=hello.txt"

This option does not apply to *WINDEV*.

DEFAULT
Use the DEFAULT keyword to OPEN the printer that is currently set as the default in
Windows. Again, users will not have access to the printer selection dialogue and
can't alter the settings at runtime.

For example, if the default printer is "Bills Desk - Canon", then the print jobs in the
examples below will be sent to that Canon printer:

OPEN (1)"*WINPRT*;DEFAULT"
OPEN (2)"*WINPRT*;DEFAULT;copies=5;orientation=landscape;offset=300:600"
OPEN (3)"*WINDEV*;DEFAULT"

WINPRT allows you to override printer settings with the DEFAULT option, but the
changed properties must be valid for the appropriate driver. This option does not
apply to *WINDEV*.

NORMAL
Use the NORMAL keyword with your OPEN directive when you want the user to be
presented with a printer selection dialogue that includes a page range option (but no
paper size or source tray options); e.g.,

OPEN (30)"*WINDEV*;NORMAL"

All settings will be displayed in the printer selection dialogue when the user sees it.
Users can accept the current settings or alter them.

SETUP
Use the SETUP keyword in your OPEN directive when you want the user to be
presented with a printer selection dialogue that includes paper size and source tray
options (but no page range option); e.g.,

OPEN(1)"*WINPRT*;SETUP"
OPEN(2)"*WINDEV*;SETUP"
OPEN(3)"*WINPRT*;SETUP;range=1:5"

All settings will be displayed in the printer selection dialogue – users can accept the
current settings or alter them.

Note: The SETUP and NORMAL options must be included with *WINPRT* in order to
display a printer selection dialogue with preset printer properties. For example,
OPEN (14)"*WINPRT*;NORMAL;orientation=landscape".

7. Printing Printing in MS Windows

ProvideX User’s Guide V8.30 Back 223

Initializing a Windows Printer
Before sending data to *WINPRT* you should set the initial font and point size of the
printer to a known state, and make it the default (using the 'FONT' mnemonic and
the 'DEFAULT' or 'DF' mnemonic); e.g.,

OPEN(chan)"*winprt*"
PRINT (chan)'FONT'("Courier New",-10),'default',

A negative number defines the absolute point size; e.g.,

PRINT (1)'FONT'("Arial",-7),'DF')

All standard PRINT statement data will use the selected font, with spacing based on
logical CPI values (pitch). Use the following guide to equivalent measures:

Column and row addressing are based on the default font. Switching fonts will not
alter the column or row addressing unless you change the default font. It is
recommended that you use the 'CPI' and 'LPI' mnemonics to set text alignment after
issuing a 'DEFAULT' or 'DF' to ensure that the output will have consistent
columns/lines per page regardless of the font chosen.

Example 1:
OPEN (1)"*winprt*"
PRINT (1)'FONT'("Courier New,-12"),'DF','CPI'(10),'LPI'(6),

The above example sets default font and then sets CPI (characters per inch) and LPI
(lines per inch) to establish line/column alignment for the output. Now, regardless
of font size, the location of the output will remain consistent.

Example 2:
0010 FONT$="Times New Roman",COLS_REQD=132,REALLY_SMALL_FONT=200
0020 CHAN=UNT; OPEN (CHAN)"*WINPRT*"
0030 PRINT (CHAN)'FONT'(FONT$,-12),'DF', ! Set base to 10 CPI
0040 CUR_COL=MXC(CHAN)+1,INCHES_WIDE=CUR_COL/10
0050 PRINT (CHAN)'FONT'(FONT$,CUR_COL/REALLY_SMALL_FONT),'DF',
0060 PRINT (CHAN)'CPI'(COLS_REQD/
0070 FOR Z=0 TO 12
0080 PRINT (CHAN)@(Z*10),"Hello
0090 NEXT

The above example scales the text to the page based on 132 characters. It is
inadvisable to reset the default font or alter the initial cpi/lpi settings after beginning
to output the data as this will alter the relative positioning of the output.

Point Size = Logical LPI = Logical CPI

-12 =6 LPI =10 CPI

-10 =7.2 LPI =12 CPI

-7 =10 LPI =16 CPI

7. Printing Printing in MS Windows

ProvideX User’s Guide V8.30 Back 224

To further assure proper alignment of text, the OPEN directive has an option clause
FORCE6X10=YES|NO; e.g,

OPEN(1,OPT=FORCE6X10=YES")"*winprt*"

When set to YES, this option automatically adjusts the column width to 60% of the
line height defined in font size specifications. This setting solves some minor
alignment issues when printing proportional fonts to a graphical print device.
Historically, most fixed-width fonts adhered to a 6x10 ratio of 6 lines to the inch and
10 characters per inch; i.e., for a character width that is 60% of the line height.

Setting Up Defaults
Depending on the printing requirements, some applications may want certain print
criteria (i.e., paper size, margins, copies, etc.) to remain constant regardless of how
specific output data is to be formatted. *WINPRT* allows you to configure various
printer settings; however, if you want to establish defaults that remain in effect
throughout the application, it is better to use WINPRT_SETUP.

The WINPRT_SETUP directive is designed to read/define a default printer and its
properties. It can also be used to produce a list of the printers that are currently
available to the system. This functionality has multiple uses in printer selection and
initialization routines and permits some repetitive options to be removed from specific
printer OPEN statements. To enable access to printers defined on a Windows server
under WindX, use the keyword SERVER in the WINPRT_SETUP statement; e.g.,
WINPRT_SETUP SERVER ...

WINPRT_SETUP READ var$
Returns the name of the current default printer.

WINPRT_SETUP WRITE printer$
Changes the current default printer.

WINPRT_SETUP INPUT var$
Prompts the user with the Windows printer selection dialogue and returns the name
of the printer selected by the user.

WINPRT_SETUP LIST var$
Generates a list of all the printers defined in the system.

WINPRT_SETUP DIRECTORY var$
Generates a list of all printers with just the printer portion of the names (excludes the
"ON Device" portion).

WINPRT_SETUP READ PROPERTIES var$
Returns the property settings associated with your current default printer.

7. Printing Printing in MS Windows

ProvideX User’s Guide V8.30 Back 225

WINPRT_SETUP WRITE PROPERTIES settings$
Changes one or more of the default printer properties. Multiple options can be
specified by separating settings with semi-colons.

For an expanded list of options, see WINPRT_SETUP Properties, p.372 in the
Language Reference.

WINPRT_SETUP Examples
Default properties are determined by the individual printer manufacturers. The
following example lists the properties set for the current default printer:

->OPEN (1)"*WINPRT*"
->WINPRT_SETUP READ PROPERTIES PROP$
->?PROP$
RANGE=ALL;COLLATE=NO;COPIES=1;ORIENTATION=PORTRAIT;PAPERSIZE=1;SOURCE=1;
RESOLUTION=300:300;OFFSET=0:0;TRUETYPE=2;DRIVER=WINSPOOL

Use the following statement to set up a 1-inch margin on all sides of the page:

WINPRT_SETUP WRITE PROPERTIES "MARGINS=1000:1000:1000:1000"

The currently selected default printer name can be determined as follows:

-: WINPRT_SETUP READ PRTR$
-: ?PRTR$
HPLaserJet III on \\machine_1\hp

Aborting a Windows Print Job

The 'AB' mnemonic is used to abort a print job from the Windows spooler; e.g.,

PRINT (30)'AB' ! To cancel the current job

Look for the name (title bar caption) of your current ProvideX window to find your
print job in the Windows print spooler job listing. How much gets printed after the
abort is determined by the printer driver and by the print spooler options Start Printing
After the First Page or Start Print After the Last Page.

COLLATE=YES | NO | AUTO PAPERSIZE=num
COLOUR=YES | NO PAPERWIDTH=num(1/10 mm)
COPIES=num QUALITY=num
DUPLEX=num RANGE=from:to
FILE=+filename|- filename RESOLUTION=num:num
MARGINS=left:top:right:bottom SCALE=num(%)
OFFSET=x:y SOURCE=num
ORIENTATION=PORTRAIT|LANDSCAPE TRUETYPE=num
PAPERLENGTH=num(1/10 mm)

7. Printing Graphical Printing

ProvideX User’s Guide V8.30 Back 226

Graphical Printing
The ProvideX environment includes several PRINT destinations for handling true
graphical (bitmap/vector) data. The standard interface to the Windows print manager
WINPRT, is designed for printing hardcopy from graphical output. Other options
include *PDF*, *VIEWER*, and *BITMAP*.

Graphical mode is not just for images – the graphical capabilities of the ProvideX
environment allow applications to deliver many more printing options than from a
strictly character-based environment. Because graphical printing is page-oriented
rather than line-oriented, the line positioning (column/row) is dynamic. ProvideX
applications that are set up to print or display graphical output can access any part of
the page at any time – top-to-bottom ordering is not required.

ProvideX also allows you to mix and match fonts and attributes, apply Graphical
Mnemonics as well as maintain older Character-Based Printing formats all on the
same page.

Graphical Mnemonics
All graphical printing from a ProvideX application requires the use of specific API
calls to the Windows print manager – only certain predefined graphical mnemonics
are mapped to Windows API calls for this purpose; e.g., 'ARC', 'CIRCLE', 'FONT',
'FRAME', 'LINE', 'PICTURE', 'PIE', 'POLYGON', 'RECTANGLE', and 'TEXT'. For the
complete list of graphical mnemonics in ProvideX, see Graphical Display/Printer,
p.580 and Graphical Printer, p.581 in the Language Reference.

Positioning within a graphical mnemonic requires the use of X and Y coordinates.
These are often derived using the @X() / @Y() functions, which convert column
and row values into graphical units. When a graphical mnemonic is applied against
a channel, the channel number should be passed as an argument to the @X() / @Y(
) functions. The following routine illustrates how to use some of the mnemonics
available for printing graphics in ProvideX:

! Printing Graphics
PRINT 'CS',
ch=UNT ! OPEN (ch)"*viewer*"
PRINT (ch)'FONT'("Times New Roman",3,"BI"),'BLUE',
PRINT (ch)'TEXT'(@X(0,ch),@Y(0,ch),@X(70,ch),@Y(5,ch),"Printing

Graphics","C"),
PRINT (ch)'PEN'(1,2,4),'ARC'(@X(7,ch),@Y(5,ch),@X(1,ch),1,0,180),
PRINT (ch)'PEN'(1,3,1),'FILL'(1,4),'RECTANGLE'(@X(2,ch),@Y(9,ch),@X(12,ch),
 @Y(13,ch)),
PRINT (ch)'PEN'(1,1,7),'LINE'(@X(2.5,ch),@Y(9.5,ch),@X(11.5,ch),@Y(9.5,ch),
 @X(11.5,ch),@Y(12.5,ch),@X(2.5,ch),@Y(12.5,ch),@X(2.5,ch),
 @Y(9.5,ch)),
PRINT (ch)'PEN'(1,2,4),'FILL'(7,1),'CIRCLE'(@X(54,ch),@Y(10,ch),@X(6,ch),1.8),
L=@X(24,ch),R=@X(33,ch),S=@X(4,ch),X=@Y(6,ch),Y=@Y(14,ch)
PRINT (ch)'PEN'(1,3,2),'FILL'(1,12),'POLYGON'(L-S*2,X,R+S*4,Y,L,Y,R-S,X,L,X),
PRINT (ch)'PICTURE'(@X(0,ch),@Y(15,ch),@X(30,ch),@Y(25,ch),"*win/nomads2",2),

7. Printing Character-Based Printing

ProvideX User’s Guide V8.30 Back 227

Printing with Colours
You can use all foreground and background colours with colour printers. Use the
'PEN' and 'FILL' mnemonics to control the colour settings for graphics mnemonics.
The following routine prints each of the available 16 colours.

0010 ! Colour Printing
0020 FONT$="MS Sans Serif",COLS_REQD=80
0030 CHAN=UNT; OPEN (CHAN)"*WINPRT*"
0040 PRINT (CHAN)'FONT'(FONT$,-12),'DF', ! Set base to 10 CPI
0050 CUR_COL=MXC(CHAN)+1; IF CUR_COL=0 THEN CUR_COL=80
0060 INCHES_WIDE=CUR_COL/10
0070 PRINT (CHAN)'FONT'(FONT$,CUR_COL/COLS_REQD),'DF',
0080 PRINT (CHAN)'CPI'(COLS_REQD/INCHES_WIDE),'LPI'(6),
0090 FOR Z=0 TO 15
0100 INTENSITY$=TBL(Z>7,"","Light ")
0110 COLOUR$=TBL(MOD(Z,8),"Black","Red","Green","Yellow","Blue","Magenta",
0110:"Cyan","White")
0120 COLOUR_MNEM$=ESC+"F"+CHR(ASC("0")+Z)
0130 PRINT (CHAN)@(0),COLOUR_MNEM$,INTENSITY$,COLOUR$
0140 NEXT

Character-Based Printing
The syntax elements available for character-based printing in ProvideX are intended
primarily to service converted or legacy applications that are limited to line-oriented
output. If a ProvideX application is designed to run on Windows, then it should
employ complete graphical (display and print) functionality. See Printing in MS
Windows, p.221.

When character-based printing is required, ProvideX allows you to format and print
the output in several different ways, depending on the code, the operating system, and
on which printer interface is used.

Standard Printing

The standard interface to the Windows print manager, *WINPRT*, is designed to
minimize any changes to print from legacy applications. This allows text-only
ProvideX applications to have transparent access to any print destination that is
available to the current Windows system.

Note: Only predefined mnemonics are mapped to Windows API calls from ProvideX.
User-defined mnemonics (via the MNEMONIC directive) are not accepted.

7. Printing Character-Based Printing

ProvideX User’s Guide V8.30 Back 228

Since the source of the output is character-based, the hardcopy will also be
character-based. However, *WINPRT* does not accept any raw control sequences
that may be required to print from legacy or converted applications (see below).

Raw Printing If an application includes printer-specific control sequences in its print routines, the
output will be stripped out by the Windows print system. Therefore, the standard
ProvideX printer interface, *WINPRT*, cannot be used for this type of output data.

Use one of the following methods for handling device-specific instructions and
direct-to-output printing in ProvideX:

• *WINDEV*, interface for printing Raw Mode in Windows

• UNC Name, Universal Naming Convention

• LPT Access, direct to the local LPT port.

WINDEV allows you to send output data via Windows in a pass-through mode. This
instructs the printer driver to accept the raw escape sequences and queue the printer.
However, these instructions will only be valid if they are supported by the specified
printer and print driver. Refer to the printer’s documentation (supplied by the
manufacturer) for the specific PCL (Printer Control Language) syntax. Raw printing
mode may be controlled using the 'RP' parameter.

Sets of mnemonics and/or escape sequences used to initialize different printers can be
maintained outside your ProvideX application via Print Drivers and Link Files.

Fixed-Pitch Fonts
Fixed-pitch fonts are easily applied via *WINPRT*. The example below adjusts the
font to allow for the number of columns in COLS_REQD. The MXC() and MXL()
functions return maximum available column and line for the channel, based on the
current default settings for paper size, printable area, offset, margin, default font
height, width, pitch.

Example:

0010 LOOP=0,COLS_REQD=132,FONT$="Courier New"
0020 CHAN=UNT; OPEN (CHAN)"*WINPRT*"
0030 PRINT (CHAN)'FONT'(FONT$,-12),'DF', ! Set Font to 10 CPI
0040 PRINT (CHAN)'FONT'(FONT$,MXC(CHAN)/COLS_REQD),'DF', ! Scale it
0050 IF MXC(CHAN)<COLS_REQD THEN IF LOOP++<5 THEN GOTO 0040
0060 PRINT MXC(CHAN),LOOP

This method of printing works with any Windows printer and with no adjustments
for legacy code. To control fonts on a text mode device, send raw escape sequences to
the printer using *WINDEV*, UNC, or LPT ports. However, the choice of fonts using
the direct-to-output method is limited to the fonts supported by the given printer.
For further information, see MXC() / MXL(), Language Reference p.486.

7. Printing Character-Based Printing

ProvideX User’s Guide V8.30 Back 229

Proportionally-Spaced Fonts

WINPRT also allows the use of proportional fonts with text-only reports and can scale
them to fit the page. When applying proportional fonts to character-based reports:

• Fields should be printed individually to ensure proper alignment.
• Decimal alignment is supported for the STR() function and format masks.
• Typical line drawing characters (_ , - , =) can be replaced by solid lines

automatically using the '+S' & '-S' mnemonic.

Applications should print fields individually for proper alignment; i.e., use the
@(col) position for each element or field. A dimensioned string like DIM X$(80);
X$(1)="Customer",X$(46)=" Balance" would not be properly aligned. String
variables are left-justified at the specified column based on the default font. Decimal
alignment is supported for the STR() function or Data Format Masks. Numeric
variables print right-justified with decimal alignment, provided a format mask is used.

Example:

10 LOOP=0,COLS_REQD=78,FONT$="MS Sans Serif"
20 CHAN=UNT; OPEN (CHAN)"*WINPRT*"
30 PRINT (CHAN)'FONT'(FONT$,-12),'DF', ! Set Font to 10 CPI
40 PRINT (CHAN)'FONT'(FONT$,MXC(CHAN)/COLS_REQD),'DF', ! Scale it
50 IF MXC(CHAN)<COLS_REQD THEN IF LOOP++<5 THEN GOTO 0040
60 PRINT (CHAN)@(0),"Customer",@(45)," Balance"
70 PRINT (CHAN)@(0),"Mustangs Unlimited",@(45),19.67:"####,##0.00-"
80 PRINT (CHAN)@(0),"CJ Pony Parts Inc.",@(45),289.67:"####,##0.00-"

However, the following style of coding will not work properly when using a
proportionally-spaced font because the variables are not printed individually:

10 DIM X$(80); X$(1)="Customer",X$(46)=" Balance"
20 PRINT (CHAN)X$
30 DIM X$(80); X$(1)="Mustangs Unlimited",X$(46)=STR(19.67:"####,##0.00-")
40 PRINT (CHAN)X$

You can also use text justification mnemonics to override the normal handling of
string and numeric data. Normally, the following mnemonics are required only
when the individual fields are grouped into a single variable that is being sent to a
printer using a proportionally-spaced font.

'JC' Justify Centre
'JD' Justify Decimal-Aligned
'JL' Left-Justify Text
'JN' Right-Justify for Numeric
'JR' Right-Justify Numeric
'JS' Left-Justify String

The '+S' mnemonic automatically replaces the underscore, dash and equals sign (_ -
and =) with solid lines. The solid line technique also only applies to fields that are
printed separately. See '+S' & '-S', Language Reference p.635.

7. Printing Print Drivers and Link Files

ProvideX User’s Guide V8.30 Back 230

Example:

10 DIM A$(10,"_"),B$(10,"-"),C$(10,"=")
20 LET CHAN=UNT; OPEN (CHAN,ERR=*END)"*winprt*"
30 PRINT (CHAN)'FONT'("MS Sans Serif",1),'DF',
40 PRINT (CHAN)'-S',@(0),A$,@(12),B$,@(24),C$,@(36),"No solid lines"
50 PRINT (CHAN)'+S',@(0),A$,@(12),B$,@(24),C$,@(36),"Solid lines"
60 PRINT (CHAN)'+S',@(0),A$+" "+B$+" "+C$,@(36),"No solid lines"

Print Drivers and Link Files
While it is possible to communicate with a printer directly, most output data is delivered
through one or more interfaces, software liaisons between the source application and the
printer.

Printer manufacturers generally supply their own interfaces (printer drivers) to make
it easier for operating systems to communicate with their products. Windows supplies
its own interface (print subsystem API) for directing access to the various printer
drivers installed on the system. It also handles other tasks, including print manager,
which allows users to select from a list of available printers to which they may send
their output, and spooler, which acts as a buffer/queue for multiple print jobs so that
printers can receive data at their own rate.

There are different printing interfaces within the ProvideX environment itself.
ProvideX includes several ready-made interfaces (*WINDEV*, *WINPRT*, *PDF*,
etc.) that allow you to print directly from an application. However, you can also
assemble your own interfaces for tailoring print requirements to different
environments: a Custom Driver consolidates mnemonics and (legacy) control
sequences into a single executable file to be called from the main program whenever
the target device is opened; a Link File allows you maintain a common printer name
(alias) that will represent all possible print destinations from your application.

Custom Driver
A custom driver is a ProvideX program that is automatically loaded and run when
the target device file is opened. They reside outside the main program in the
ProvideX *DEV directory (/pvx/lib/_dev). Driver names are limited to 12
characters in length.

Most custom drivers are used to consolidate a set of Mnemonics or the escape
sequences that apply to a specific file or printer. They are often used to initialize
printers in Character-Based Printing, but they can also be used to redirect output
from one device/file to another, prompt the user for additional information, and/or
execute operating system commands.

Note: While this chapter focuses primarily on printers, custom drivers can be created
for use with any device to be accessed by the ProvideX environment. For more
information, see Device Drivers, p.390.

7. Printing Print Drivers and Link Files

ProvideX User’s Guide V8.30 Back 231

The DEFPRT directive at the beginning of the code tells Providex that the channel is a
printer. For example, the following printer driver, *DEV/HPLASER, defines the
maximum columns and rows for the printer, then defines all of the mnemonics and
initializes the printer:

0010 ! HP Laser Jet: 10 cpi, 6 lpi, Portrait
0020 DEFPRT (LFO)80,60
0030 MNEMONIC (LFO)'*C'=ESC+"E" ! Close printer mnemonic -- Resets all
0040 MNEMONIC (LFO)'FF'=$0C$! <formfeed>
0050 MNEMONIC (LFO)'CR'=$0D$! <cr>
0060 MNEMONIC (LFO)'LF'=$0D0A$! <cr><lf>
0070 MNEMONIC (LFO)'NP'=ESC+"&k0S":80,0 ! 10 cpi
0080 MNEMONIC (LFO)'SP'=ESC+"(s12H":96,0 ! 12 cpi
0090 MNEMONIC (LFO)'CP'=ESC+"&k2S":132,0 ! 16.66 cpi
0100 MNEMONIC (LFO)'LT'=ESC+"&l12D":0,120 ! 12 Lines per inch
0110 MNEMONIC (LFO)'L8'=ESC+"&l8D":0,80 ! 8 lines per inch
0120 MNEMONIC (LFO)'L6'=ESC+"&l6D":0,60 ! 6 lines per inch
0130 MNEMONIC (LFO)'PM'=ESC+"&l0O" ! Portrait mode
0140 MNEMONIC (LFO)'LM'=ESC+"&l1O" ! Landscape mode
0150 MNEMONIC (LFO)'RM'=MNM('PM',LFO)+MNM('NP',LFO)+MNM('L6',LFO):80,60
0160 X$=MNM('PS',0); IF X$<>"" THEN MNEMONIC (LFO)'PS'=X$! Start Slave
0170 X$=MNM('PE',0); IF X$<>"" THEN MNEMONIC (LFO)'PE'=X$! End Slave
0180 X$=FIB(LFO); IF X$(19,1)="S" THEN LOCK (LFO,ERR=*NEXT)
0190 PRINT (LFO,ERR=0200)'*C','RM',
0200 END

The system variable LFO is used to identify the affected channel/file. It will contain
the value of the last file opened, which in the case of a device driver, is the channel
for which the driver is responsible.

Once created, *DEV/HPLASER could be accessed in an application as follows:

open (1)"*WINDEV*;HP Laser Jet"
call "*dev/hplaser"

For general information on device drivers in ProvideX, see Device Drivers, p.390.

Link File
A link file is a device descriptor that contains a single line of code that simply points
to a device or device driver; e.g.,

[Pvxdev]*WINDEV*;Generic/Text Only;FILE=ABC.PRN hplaser

Where the format of the device descriptor is as follows:

Location Length Contents
1 8 "[Pvxdev]": Device descriptor ID.
9 60 True path to the device.
69 12 Device type (name of driver).
71 184 Reserved for future (blank).

7. Printing Print Drivers and Link Files

ProvideX User’s Guide V8.30 Back 232

When ProvideX opens a link file it redirects to the path specified in bytes (9,60). This
is the actual file to be opened. Once the file is opened, ProvideX will automatically
CALL the device driver specified in bytes (69,12).

The link file name serves as an "alias" that can be used in place of where the associated
file or device information appears in an application’s OPEN statement. For example, if
the HP Laser Jet device and driver (described above) were defined in a link named
"LP", the device could then be accessed from the application as follows:

open (1)"LP"

The application now sends data to the printer defined via "LP". Provided "LP" is
always used in the OPEN statement, the contents of the Link file itself can be
changed – tailored to any device or driver that will be used with the application. If
device information changes, the application will direct output to the new
destination, provided the contents of the "LP" Link file is updated, the device exists,
and the custom driver is located in the *DEV directory.

Link files are simply plain text files that may be produced using any text editor.
ProvideX also supplies a prompt-driven utility (*UCL) that simplifies the creation and
maintenance of link files. This utility allows you to choose between three slightly
different link header types (File, Device, or Attached Printer):

*UCL prompts for the device information that will appear on the descriptor line. The
following examples illustrate some device information that could be written to Link
files via the *UCL utility for various printer setups:

Link File Name: LP
Other File to Open: LPT1
Prog to Call: epson

Link File Name: /MYAPP/P1
Other File to Open: >lp -d queuename -c -s 2>/dev/null
Prog to Call: hplaser

Link File Name: Googles
Other File to Open: /tmp
Prog to Call: spooler

[PVXLNK] To point to a file without calling a program. For example, if you moved
the GLDETAIL file to another directory, you could create a link file
using the original name (GLDETAIL) then, with the file name portion of
the link, point to the new location of the actual GLDETAIL file.

[PVXDEV] To open a file as well as call a program. Commonly used to associate
printers and printer drivers.

[PVXAPR] Specifically for pointing to a printer that is physically attached to the
computer. This issues an additional escape sequence wrapped
around every line. ProvideX opens a file, calls the program in
question, and automatically prints the 'PS' mnemonic to the printer.
It will also issue a 'PE' mnemonic when it attempts to close the file.

7. Printing Logical Printers

ProvideX User’s Guide V8.30 Back 233

Link File Name: WINDOWS
Other File to Open: [wdx]*winprt*
Prog to Call: myprog

Pages and Form Feeds in Printing
You can access an entire page and print to it. However, you can only print to the
current page at any one time. To complete a page, either use a form feed or close the
channel. For proper spooler operation, do not include leading or trailing form feeds
within the print job. Spoolers always assume the paper is at top-of-form when a job
begins.

Logical Printers Logical Printer

A PRINT destination does not necessarily mean a hardcopy device. In ProvideX, you
have the option to send output data to an image file, HTML, PDF, or preview facility
just as easily as any physical printer. In these alternative formats, your output can be
further manipulated, merged with other documents, displayed/distributed as is, or
simply "printed out" at a later time.

The following logical PRINT destinations can be made available for use (in an OPEN
statement) using standard file options. For specific syntax, refer to Special Files and
Devices in the Language Reference, p.733.

HTML Output - *HTML*

HTML generates HTML (Hypertext Markup Language) documents from
character-based output in ProvideX (Windows or UNIX/Linux).

Only reports that are formatted using fixed-pitched fonts (e.g., Courier) can be converted
to HTML. However, the resulting .htm files are in a universal format that can be viewed
in any browser or incorporated into a web page for posting on the internet; e.g.,

OPEN (1)"*HTML*;FILE=Sample.htm;SHOW;FONT=Courier New;TITLE=Sample;
BACK=FFFFFF;TEXT=000000"

This example creates an HTML file called Sample.htm. It generates a report titled
"Sample" that is formatted in the Courier New font in black text on a white
background. The keyword SHOW indicates that the current default browser will be
automatically invoked to display the file once it is created. If a file name is omitted,
the system prompts for a path/file name to store the resulting HTML document.

Full syntax details are described under *HTML*, Language Reference p.736.

Note: A form feed is automatically appended to every print job sent.

7. Printing Logical Printers

ProvideX User’s Guide V8.30 Back 234

Virtual Bitmap - *BITMAP*

BITMAP captures graphical output to a 24-bit colour bitmap image stored in
memory. The resulting *BITMAP* image can be retrieved for display using the
'PICTURE' mnemonic, which accepts the assigned *BITMAP* channel number
preceded by a # in place of a file name; e.g.,

OPEN (1)"*BITMAP*"
PRINT (1)"HELLO"
PRINT 'PICTURE'(@X(col1),@Y(row1),@X(col2),@Y(row2),"#1"),

The SAVE FILE directive can also save *BITMAP* contents directly to a.bmp file; e.g.,

OPEN (1)"*BITMAP*"
PRINT (1)"HELLO"
SAVE FILE (1) TO "C:\test.bmp"

For more information, refer to documentation on *BITMAP*, the SAVE FILE
directive, and the 'PICTURE' mnemonic in the Language Reference, p.734.

Print Preview - *VIEWER*

VIEWER directs graphical and character-based output to the internal print preview
facility (Viewer).

The Viewer is a customizable user interface in ProvideX for Windows (and WindX)
that renders output for display as it would appear in hardcopy form using
WINPRT or any other print destination. When a report is loaded into the Viewer
interface, it can then be displayed, manipulated, and "printed out" using a wide
variety of format settings, including:

• 1-page, 2-page, 2-page book style, and 4-page viewing.
• 10 to 400% zoom increments and Fit-To-Width/Fit-To-Window display.
• Page-specific paper size and (landscape/portrait) orientation.
• Find and Find Again search funtionality.
• Full report scrolling.
• Watermarks for display or print.
• Banner information for display or print.
• Background spooling.

The above settings, as well as many other actions, are controlled directly from the
Viewer panel menubar, GUI buttons and drop-downs:

7. Printing Logical Printers

ProvideX User’s Guide V8.30 Back 235

A full suite of options representing various graphical and character-based output
properties may also be specified on the OPEN command, either in the "*VIEWER*"
syntax or by issuing a OPT=string$; e.g.,

OPEN(chan)"*VIEWER*"
OPEN(chan)"*VIEWER*;Title=My Report;Orientation=Landscape"

Full syntax details for setting output properties are described under *VIEWER*,
Language Reference p.748.

PDF Output - *PDF*

PDF generates documents in PDF, Postscript Display Format, from any graphical
and/or character-based output in ProvideX (Windows or UNIX/Linux). The.pdf
files created using this PRINT destination are fully compatible with Adobe Acrobat
as well as with any other PDF reader; e.g.,

OPEN (1) "*PDF*;FILE=/tmp/pvx.pdf; FORM=Letter:8.5in:11in"

If the file name is omitted, the system prompts for a path/filename to store the
resulting PDF.

Output to *WINPRT* can be automatically intercepted for PDF using the 'AP' system
parameter. When 'AP' is set, if the user selects Output To File and includes a filename
ending in.pdf, ProvideX looks at the option selected during the *WINPRT* Printer
Selection dialogue and processes the output through *PDF* instead of *WINPRT*.

Full syntax details are described under *PDF*, Language Reference p.740.

7. Printing Report Writer

ProvideX User’s Guide V8.30 Back 236

Report Writer
The Report Writer is a ProvideX add-on product for designing and generating
formatted reports from ProvideX data. It allows developers and end-users to
construct professional reports with the ease and functionality of a spreadsheet
application. Built-in features include data drag-and-drop, column and row sizing,
computational values, cell formatting (fonts/colours/borders/alignment), image
support, sorting rules, data filters, run-time parameter settings, and more.

Input sources can be any native ProvideX file with an Embedded Data Dictionary,
a ProvideX View, or any other source whose data can be accessed using a custom
data source object. Output may be channeled to a variety of physical and logical
PRINT Destinations, or to a user-defined output object.

Reports are generated based on report definitions, which are produced and modified
in the Report Designer interface. Users may prefer to start their new report
definitions using the interactive Report Wizard facility. A pvxreport object interface
provides developers with programmatic access to report definitions for changing
data and format on the fly.

Use of this product may require a separately-purchased activation key apart from
your initial ProvideX activation. Contact your local ProvideX dealer/distributor or
visit www.pvx.com for complete product information and licensing. For more
information, refer to the ProvideX Report Writer manual.

7. Printing Report Writer

ProvideX User’s Guide V8.30 Back 237

Report Designer
The Report Writer is used for designing the format and layout of a report. The data is
defined in terms of data source selection, sorting rules, and selection criteria for
filtering the data. Report layouts are saved as ProvideX report definition files, which
can then be used to generate the report.

Report Wizard
This provides a quick and simple way to create a report that does not require any
special formatting. The wizard walks you through a series of eight steps that result
in the creation of a new report definition.

7. Printing Printing via Thin-Clients

ProvideX User’s Guide V8.30 Back 238

Printing via Thin-Clients
Print requests are handled differently, depending on the thin-client type. Methods
for printing via WindX, JavX, or UltraFX are outlined below. For more information
on the options available, refer to the ProvideX Client-Server Reference.

Under WindX
Windows printers can be accessed via WindX by prefixing the name of the print
destination with the [WDX] tag; e.g.,

OPEN (30)"[WDX]*WINPRT*"
OPEN (1)"[WDX]\\Print_Server\HP_Laser"

Under UNIX/Linux, the [WDX] tag is not required for access to *WINPRT* and
WINDEV because these print requests default to the WindX client automatically.

Access to *WINPRT* and *WINDEV* under a Windows server will open the printer
relative to the host. The [WDX] tag is required in order to direct print requests to the
WindX client’s print system.

To determine if WindX is being used, use the TCB() function or test the MSE system
variable:

%WINDX$=""; IF TCB(88)>0 THEN %WINDX$="[wdx]"

or

%WINDX$=""; IF DEC(MID(MSE,22,1))>0 THEN %WINDX$="[wdx]"

To make all OPEN printer requests WindX aware:

OPEN (1)%WINDX$+"*WINPRT*;AsIs"
OPEN (1)%WINDX$+"*WINDEV*;AsIs"
OPEN (1)%WINDX$+"*WINPRT*;HP Laser Jet on \\Main_Server\HPLaser"
OPEN (1)%WINDX$+"*WINPRT*;HP Laser Jet;Orientation=Landscape"

Under JavX and UltraFX
Unlike WindX, the JavX and UltraFX thin-clients do not have direct access to any of
the print facilities on the local machine. The new ProvideX UltraFX print driver
*DEV/ULTRAFXPTR was developed for use with UltraFX but will work with JavX as
well. It automatically sends print jobs to a linked printer device that sends the PDF
result to the client machine, which can then be directed to the appropriate local
printer.

A personal device file may be created (via the *UCL utility) to accommodate this
feature. However, you can also use the special print interface *UFXPTR*, which
supports the same output parameters as *PDF*; i.e.,

OPEN (chan[,fileopt])"*UFXPTR*[;option][;option] [...]"

For format details, see *PDF* in the ProvideX Language Reference.

ProvideX User’s Guide V8.30 Back 239

User’s Guide 8
 Client-Server

ProvideX includes several facilities that allow your processing workload and/or
data to be distributed over network-connected systems, client workstations, and
shared servers. They allow you to maintain heavy processing and data storage on a
secure central server while delivering a flexible user-oriented interface to multiple
desktop systems and/or portable devices.

This chapter discusses how the various technologies (WindX, JavX, UltraFX,
Application Server, etc.) will work with your ProvideX applications. For detailed
information on this subject, refer to the ProvideX Client-Server Reference.

Client-Server Deployment Options, p.240
Hosting Facilities, p.242
Thin-Clients, p.243

Overview

Background Since IT departments first made the transition from large mainframes to PC systems
(in the 1980s and 90s) the client-server model has been a central concept in distributed
computing. It describes a network architecture where a client process requests/receives
data or services, and a server process provides the data or services. Most internet
applications, including Email products, FTP (file transfer) clients, and web browsers,
are based on this client-server model. The terms "client" or "server" can apply to
hardware and/or software components on either side of the configuration.

TCP/IP and Remote Processing
Transmission Control Protocol/Internet Protocol (TCP/IP) is the primary
communication language for governing the services that everyone uses over the
Internet, including file transfer, electronic mail, and remote logon.

When a TCP/IP connection is established between client and server, the client
requests a connection to a specific server by giving its IP address and a service
identifier (port/socket number). On the host computer, an application establishes
itself by identifying its service number which typically ranges from 1 to 65535.
Typically, numbers below 2000 are reserved for specific Internet applications, while
numbers above are available for general use.

Topics

8. Client-Server Client-Server Deployment Options

ProvideX User’s Guide V8.30 Back 240

ProvideX has built-in support for TCP/IP protocol, which allows developers to create
new services or to interact with existing services over a network. The [TCP] interface is
used to communicate directly via TCP/IP. The [RPC] remote processing control provides
a basic method to read/write data in ProvideX files as well as to execute ProvideX
background tasks on one or more remote servers via TCP/IP.

These TCP/IP-based facilities are not required when using the client-server
deployment options described below. The ProvideX thin-client and hosting products
described in this chapter are distributed with pre-built connection/processing
functionality that is independent of your hardware and network implementations.
Another consideration for remote file access is ProvideX ODBC Client-Server, p.342.

Client-Server Deployment Options
Client-server functionality is tightly-integrated into the language itself. ProvideX offers
a range of software extensions for building distributed systems and for optimizing
the deployment of your applications across your user base.

A typical client-server application may be configured as follows:

• On the server side, a ProvideX host program (either *NTHost or the Application
Server) launches a copy of ProvideX and monitors a TCP/IP socket, "listening" for
incoming requests from clients.

• On the client side, JavX, WindX, or UltraFX opens the client end of the same socket
the host is listening to, and passes requests through to the server.

Choosing the Right Configuration

Different customers have different needs; therefore, choosing the appropriate client
software requires careful analysis of the trade-offs between accessibility and
expressiveness, as illustrated in the table below.
:

WindX Full-featured thin-client that takes advantage of the local OS to deliver a rich
graphical environment (along with auto-update capability) from any remote
ProvideX host system to any MS Windows client.

A WindX client is most effective when:
• end-users are accessing the application from a conventional workstation
• long complex tasks are to be performed on a regular basis
• application developers determine the client platform (not end-users).

8. Client-Server Client-Server Deployment Options

ProvideX User’s Guide V8.30 Back 241

UltraFX Platform-independent GUI environment that includes many built-in
features such as mutli-threading, toolbars, dockable-stackable-moveable
windows, split panes, and an embedded web browser. This thin-client is
built on the powerful Eclipse RCP framework. (ProvideX applications do
not need to be developed in Eclipse to use UltraFX).

JavX SE The JavX Swing Edition is a Java-based thin-client with similar functionality
to WindX that enables ProvideX applications to run on any client platform
that supports the Java 2 Standard Edition (J2SE) runtime. With JavX SE, the
web browser is promoted to a universal ProvideX client—users can navigate
to a JavX SE-enabled web page which uses a Java applet to interface with the
server application. However, JavX SE implementations offer slightly less
functionality than WindX and have limited access to the local machine.

A JavX SE client is most effective when:
• end-users are accessing the application from outside the office
• long complex tasks are to be performed occasionally
• end-users require more choice in platforms.

JavX AE The JavX AWT Edition provides a simpler GUI designed specifically for
handheld devices that support the Java 2 Micro Edition (J2ME) runtime.

A JavX AE client is most effective when:
• end-users are accessing the application from outside the office
• more general tasks are to be performed occasionally
• typical platform is a WinCE PDA.

JavX AE functionality is upwardly-compatible with JavX SE.

JavX LE The JavX Light Edition represents a limited non-GUI version of JavX that is
intended primarily for fixed-purpose industrial or consumer products.

A JavX LE client is most effective when:
• end-users may be performing a few simple tasks using an interactive

device/appliance.

JavX LE functionality is upwardly-compatible with JavX AE/SE .

HTML
Forms

A ProvideX WebServer/HTML implementation allows for a basic web
user environment that has no access to the local machine.

An HTML Forms implementation is an effective client when:
• end-users require brief access to fill in a few form fields that are

presented using a standard web page.

Refer to the ProvideX WebServer documentation for information on
using HTML with ProvideX to create a web application.

8. Client-Server Hosting Facilities

ProvideX User’s Guide V8.30 Back 242

Hosting Facilities
In a direct TCP/IP client-server environment, JavX and WindX thin-clients would be
set up to access server-side applications using the ProvideX Application Server or
*NTHost/*NTSlave.

*NTHost/*NTSlave

These facilities are supplied with the ProvideX base system for establishing a very
simple TCP/IP connection. On the host computer, the program *NTHost is run to
monitor incoming requests from client PCs and to initiate new processes to service
these requests. On a Windows client system, the program *NTSlave begins the initial
connection to the host by requesting a new session to be started.

While the *NTHost/*NTSlave combination is sufficient for establishing quick
client-server connections, they are not designed for use "as is" outside of a closed
local area network. For exposure to large networking environments or the Internet, it
is much safer to run the ProvideX Application Server.

Application Server
Application Ser ver

The ProvideX Application Server provides an enhanced, configurable alternative to the
built-in client-server processes supplied with the ProvideX base system. It extends the
usability of your server-based applications and delivers an all-in-one solution for
protecting/maintaining your data over large networks including the Internet:

• Simplified Interface. User-friendly utilities are provided for creating, configuring
and administering the different characteristics of your ProvideX client-server
applications.

• Uses only one TCP /IP Socket. Default client-server processes in ProvideX can end up
using many different sockets depending on the implementation and the number of
clients. The Application Server architecture allows you to direct all connections
through a single socket.

• Designed for firewalls. If it is too difficult for a firewall to determine which sockets
it needs to block, it might as well be disabled. By reducing the number of sockets
needing access, the Application Server ensures that your firewall is fully
operational.

• Session Adminstration. One of the primary security features in the Application
Server is its ability to monitor and control access through session administration,
user authentication, and limiting client access.

• Optional SSL encryption. The Application Server supports use of a TCP/IP-level
Secure Socket Library, a security protocol that allows you to encrypt communications.

8. Client-Server Thin-Clients

ProvideX User’s Guide V8.30 Back 243

Thin-Clients
WindXJ avX

Once one of the Hosting Facilities is configured and running on the server, an
installed/configured thin-client should be able to establish communication with the
server-based ProvideX system.

Programming for Thin-Clients, p.243
WindX, p.245
JavX, p.246
UltraFX, p.247
Upgrading Client Software, p.248

The ProvideX thin-clients described below allow application processing and data
storage to be maintained on a secure, centralized server, while delivering graphical
interface components to the client desktop.

WindX runs in conjunction with a copy of ProvideX for Windows, so WindX can
issue virtually any command of which ProvideX is capable.

JavX uses a set of Java equivalents to match ProvideX language features – and while
JavX permits ProvideX GUI applications to be run on a wider range of platforms, it
cannot replicate some Windows-specific functionality.

UltraFX, the newest ProvideX thin-client, takes JavX to the next level, offering a
self-contained user environment for launching your ProvideX application on any
Java-enabled platform.

These products may be integrated directly into your application and shipped as an
integral component.

Programming for Thin-Clients

With a ProvideX thin-client in place, most content is routed automatically to the
client without the need for special programming techniques. Code related to
printing, keyboard input, mouse movement, printer selection and GUI elements are
routed to the client or server automatically. ProvideX client-side functionality is
designed to minimize network traffic and improve system performance.

Following is an overview of ProvideX thin-client functionality. For programming
information that is specific to a particular thin-client, refer to the WindX, JavX, and
UltraFX sections documented later in this chapter. See also Printing via
Thin-Clients, p.238. For more detailed documentation, refer to the ProvideX
Client-Server Reference.

Topics

8. Client-Server Thin-Clients

ProvideX User’s Guide V8.30 Back 244

Client or Server?
ProvideX includes some server-side indicators for detecting a thin client session.
MSE bytes 32 for 1 byte, will be a W for Windows-based (WindX), J for Java-based
(JavX-UltraFX) or 00 for neither. TCB(88) will be zero for no client, or will
contain the revision level of the WindX/JavX/UltraFX communications protocol
that the client is using.

Once ProvideX on the server recognizes the existence of the client station, it changes
internal settings that route graphical requests to the thin-client. Graphical directives
and functions invoked by the application are tokenized and sent to the client.

Code that may be executed on either side needs to indicate if it is to execute on the
server or the client. Execution defaults to the server side. To perform an operation on
the client side, use the [WDX] tag; e.g.,

[W DX]CALL "[WDX]*windx.utl;get_num","tcb(29)",number

OPEN(channel)"[WDX]Path\Filename"

When using the Application Server, an OOP object %APS is created on both the
server side and the client side of the connection. This contains properties about both
server and client instances of ProvideX that may be used in your code.

Mnemonics
Thin-clients respond directly to the internal form of all mnemonics. Therefore, unlike
conventional terminals, no translation table is required. Mnemonics, such as 'CS', are
transmitted as $1B$+"CS" and screen position commands, such as @(1,2), are sent
as $1B$+"@2"+CHR(1)+CHR(2). Long-form mnemonics, such as 'WINDOW' and
'DROP', are sent in their native form as well.

Graphical Control Requests
ProvideX tokenizes all graphical directives and references, then forwards them to the
client for processing. Access to the control attributes (e.g., BackColour$, Height,
Enabled) is tokenized as well and forwarded to the client for processing. Under
JavX-UltraFX it may be better to use directives rather than attributes when
interfacing with controls.

Turbo Mode
During normal operation, each tokenized message sent by the host to the client
requires an acknowledgment. While this process guarantees that the application and
client are synchronized fully, it can slow down overall transmission speeds. Turbo
mode in ProvideX ('TU' system parameter) allows the thin-client to receive and
process many requests locally without the need to acknowledge each transmission
from the host. However, since no return result is acknowledged, be aware that some
error reporting may be ignored.

8. Client-Server Thin-Clients

ProvideX User’s Guide V8.30 Back 245

Help
Help documents with their associated application may be launched from the client
via the SYSTEM_HELP directive.

Notes on Efficient Coding
While thin-client functionality is fully integrated into ProvideX, how you design
your application, and how it handles data, may have an impact on performance.
Inefficient code can lead to sluggish application response, overall network
congestion, and higher CPU usage on the server. It’s best to avoid:

• Requesting the same information more than once.

• Sending the same data repeatedly, especially long strings of information.

• Loops of code to set/retrieve properties or characteristics on the server side.

• Loops of code to calculate values based on items that need to come from the PC.

Platform diversity, available bandwidth, and other network issues should also be
considered when developing a ProvideX application for a client-server environment.
Regardless of your network constraints, it’s best to keep the following in mind:

• The less data you send, the less bandwidth you use.

• Loading 10,000 lines of 100 characters each in a list box on the client will be slow.
The slower the bandwidth, the slower the application.

• The fewer questions you ask of the client the better, as latencies can build up.

• If you need to get data from a client (FIN() information or object properties) ask
the question once and keep the answer on the server in case you need it again

• Each time information is needed, the request must be packaged, sent, decoded, a
result gathered, the result packaged then sent back to the server and decoded..

For further discussion on this topic, see Optimizing Your Code in the ProvideX
Client-Server Reference.

WindX Fundamentally, WindX is designed to provide a feature-rich, graphical user interface
to a Windows client from any server-based ProvideX application, even if the host
system does not support that type of interface (e.g., UNIX). WindX can also be
configured to take full advantage of each platform’s functionality by allowing
processing and file access to be handled on either side of the client /server
configuration.

Two versions of WindX can be obtained from your dealer/distributor or
downloaded from the ProvideX website, www.pvx.com:

• WindX Standalone, which requires an individual license per client installation and
is able to interact with any ProvideX application on any server. Each license has its
own serial number, user count, expiry date and activation key.

• WindX Plug-in, which is freely distributable for clients but must connect with a
ProvideX application on a server that maintains a multi-user Professional or
eCommerce license. If the server is not licensed for plug-in access, server

8. Client-Server Thin-Clients

ProvideX User’s Guide V8.30 Back 246

file/directory permissions are incorrect, or a ProvideX session cannot be
established within 2 minutes of startup, then the plug-in will terminate
automatically.

For complete WindX installation and activation details, see WindX Thin Client in the
Installation and Configuration guide.

Running ProvideX Applications in WindX
As noted earlier, any file type that ProvideX can access may be accessed locally
across a WindX connection (serial, keyed, indexed, ODBC, OCI, TCP etc.). WindX
allows you to CALL programs that exist on the client; however, you may not LOAD or
RUN local programs. The *WINDX.UTL utility may be used to simplify many client
requests.

OOP objects and COM controls may be utilized by the server for WindX clients via:

NEW("[WDX]Classname")
DEF OBJECT X,"[WDX]RemoteCOMObject"

DLL() functions may be used provided they are wrapped in a ProvideX program
that is installed on the client that can be called from the server.

JavX The JavX thin-client was originally designed to be a Java version of WindX. JavX
takes full advantage of Java's portability and platform independence to provide a
flexible alternative to the Windows-only thin-client. However, it is not possible to
recreate the entire Microsoft Windows environment within the Java framework, so
some WindX functionality may not be available under JavX.

JavX uses Java 2 GUI components to replicate the complex graphical features
available in ProvideX. But unlike WindX, the Java-based thin-client is able to run on
any machine that has the appropriate Java Runtime Environment (JRE). The Java JRE
is a free download that can be installed on any machine just prior to running JavX.

Three editions of JavX are currently available for different target platforms:

• JavX SE (Swing Edition) designed for desktop systems that run the Java 2 Standard
Edition (J2SE) runtime environment — this includes Windows, Linux and UNIX
X-Windows, and Apple Mac OS X systems.

• JavX AE (AWT Edition) designed for small devices that run the Java 2 Micro Edition
(J2ME) Constrained Device Context (CDC) Personal Profile — this includes a
variety of personal digital assistants (PDAs).

• JavX LE (Light Edition) designed for task-specific devices that run the J2ME CDC
Foundation Profile — this includes a range of consumer products, automotive and
other interactive components.

For complete JavX installation and activation details, see JavX Thin Client in the
Installation and Configuration guide.

Note: The Standalone and Plug-in downloads for WindX are for installation on
Windows client machines only.

8. Client-Server Thin-Clients

ProvideX User’s Guide V8.30 Back 247

Running ProvideX Applications in JavX
As noted earlier, local ProvideX programs cannot be called on the JavX client.
However, several of the entry points in *WINDX.UTL have been coded specifically
into JavX so that some specific CALL commands may be made. Serial files may be
created, accessed or deleted across the connection, but other file types are not
available. Java classes may be utilized for JavX clients via the ProvideX COM
interface:

DEF OBJECT X,"[WDX]JavXClass"

UltraFX This is a Java-based thin-client that provides a self-contained user environment for
ProvideX applications. Built on the Eclipse Rich Client Platform (RCP), UltraFX
delivers a rich GUI environment with built-in features like mutli-threading, toolbars
(coolbars), dockable-stackable-moveable windows, split panes, an embedded web
browser. It is entirely platform independent, a relatively small download, and it
requires little or no changes to your ProvideX applications.

8. Client-Server Thin-Clients

ProvideX User’s Guide V8.30 Back 248

While UltraFX employs the Eclipse RCP framework, your ProvideX applications do
not need to be developed in the Eclipse IDE. In fact, any ProvideX application can
run in UltraFX. For more on RCP, refer to the website http://wiki.eclipse.org/RCP

UltraFX Workbench. The central windowing environment in UltraFX is called the
workbench. This provides the overall container for all views, menus, tool/coolbars,
shortcuts, and other interface control objects needed for running applications. From
the user's perspective, the workbench represents a desktop-style front end for
running multiple application interfaces at the same time. Each ProvideX process
running in UltraFX will be launched in the form of a separate view.

For complete UltraFX installation and activation details, see UltraFX Thin Client in
the Installation and Configuration guide.

Running ProvideX Applications in UltraFX
Implementation procedures for running a ProvideX application in UltraFX are
virtually identical to those described for JavX. Applications running within UltraFX
use standard ProvideX syntax (directives, mnemonics, etc.) to create GUI widgets
like windows, buttons, menu bars, etc. On top of that, UltraFX provides a
customizable platform and independent framework. It also allows for advanced
branding, and unique GUI components such as a coolbar/toolbar, status bar,
progress monitors/indicators, as well as pre-built views like the tree view and
browser within the UltraFX workbench.

Upgrading Client Software

There are multiple options available for upgrading/updating ProvideX-based
client-server applications. Developers may take advantage of 3rd party update
services such as those supplied by InstallShield or they may create their own software
update packages. Also, ProvideX comes with an AutoUpdater for updating any
WindX client from software repositories on the server they connect to.

AutoUpdater
This utility is included with the ProvideX base activation to provide a means for
automatically updating (or downgrading) and repairing client installations of
WindX. It can be configured to check for and install critical patches/upgrades on all
client workstations whenever they are connected to the server. It is not available for
JavX or UltraFX clients.

For more information, refer to the AutoUpdater documentation in the ProvideX
Client-Server Reference.

ProvideX User’s Guide V8.30 Back 249

User’s Guide 9
 External Components

As explained in Chapter 4, Called Procedures allow code to be reused within
ProvideX applications to help increase efficiency and maintainability, as well as reduce
program size. The same principles apply to the functionality that allows external
(third-party) software modules to be accessed and incorporated into your ProvideX
applications from anywhere in the local operating environment or over a network. This
chapter discusses the use of external objects / custom controls in ProvideX applications.

Concepts and Terminology, p.250
Calling DLLs from ProvideX, p.252
ProvideX COM Support, p.261
Event-Driven COM, p.294
JavX COM Support, p.301
ProvideX Type Library Browser, p.304
ProvideX OLE Server, p.309

Function Library Model
Calling procedures from external files is almost exactly the same as calling line label
entry points from within ProvideX, for example,

0010 ! CUSTMAINT
0020 READ_CUST:
0030 READ (%CUST_FILE,KEY=CST_ID$...
...
0090 EXIT
0100 !
0110 UPDATE_CUST:
0120 WRITE (%CUST_FILE,KEY=CST_ID$...
...
0190 EXIT
0200 !
0210 REMOVE_CUST:
0220 REMOVE (%CUST_FILE,KEY=CST_ID$...
...
0290 EXIT

The above program contains several “functions” that can be re-used at run time for
the maintenance of a customer data file.

Topics

9. External Components Concepts and Terminology

ProvideX User’s Guide V8.30 Back 250

Concepts and Terminology
In order to better understand the facilities in ProvideX for accessing external
components, it is necessary to understand the general concepts and some of the
history behind the technologies being discussed.

API An API (Application Program Interface) is a set of functions and protocols, for
building and implementing software applications. Most operating systems provide
an API so that programs designed to run on them can access system services and
stay consistent within the operating environment. Some common APIs include:

• Windows API, Microsoft’s core set of interfaces for running software within the
Windows operating system.

• Single UNIX Specification, a standardized set of interfaces for running software
within versions of UNIX and Linux.

• Java API, a set of standard interfaces and classes grouped into packages such as
java.awt for building GUIs, java.io for handling I/O requests, etc.

These APIs also represent the specific calling conventions that define how OS
services are to be invoked. There can be thousands of API calls in a full-blown
operating system. While APIs are primarily intended to assist and accelerate
program development, they provide a huge benefit to end users as well. By
maintaining a set of common interface elements, APIs also make it easier for users to
learn new programs that are designed to run on the same OS.

While an API is designed for interaction between the OS and applications, it can also
establish standards for interaction between applications; e.g., Microsoft introduced
various interface technologies to assist communication between applications running
under Windows; i.e., DDE, OLE, COM, and .NET. Some of these are explained below.

DLL DLL (Dynamic Link Library) files contain executable code that can be shared by
several different applications running under MS Windows. Basically, they serve as
external code repositories. Unlike executable files, DLLs are not launched directly by
the user but are called for by a running program or by other DLLs to provide
services not built into the application. They can also save memory space because
they don’t get loaded into RAM until they are actually needed.

Some DLLs are used only by a specific application, while others may be used by several.
For example, a variety of programs would likely call the same Windows DLL for
handling user interface tasks to create common toolbars, text boxes, scroll bars, etc.

The DLL files installed to support specific device operations are also called device
drivers. The UNIX equivalent of a DLL is referred to as a shared library or shared
object module. For more information, see Calling DLLs from ProvideX, p.252.

Note: Some terms may have mixed meanings in the industry due to an enduring
misnomer, remnants in the evolution of a technology, or a direct marketing strategy.
The definitions below apply to the use of external components in ProvideX.

9. External Components Concepts and Terminology

ProvideX User’s Guide V8.30 Back 251

DDE Dynamic Data Exchange is an early Windows technology used to exchange data,
commands, and status information automatically between different applications.
While some DDE implementations are still in operation today, this technology has
largely been superseded by the more robust OLE/COM Automation used in more
current versions of Windows.

OLE OLE (Object Linking and Embedding) is a Microsoft Windows technology that
enables objects created in one application to be imported by reference into the
documents of another; e.g., an Excel spreadsheet placed inside an MS Word
document. These are referred to as compound documents. Making changes to an OLE
compatible object in the original editor automatically updates the imported version
within the compound document.

An extension of OLE, referred to as OLE Automation, provides an infrastructure for
applications to access and manipulate shared automation objects. This technology is
now a part of the Microsoft COM implementation explained below.

OCX An OCX (OLE Control eXtension) control is a special-purpose program object that
can be re-used by several applications running on Microsoft's Windows systems.
This technology began as VBX (Visual Basic eXtension) controls, which were VB-only
in the early days of Microsoft Windows. "OLE controls" or "OLE custom controls"
were then created to run on Windows 95/NT supporting 32-bit applications. OCX
has now been replaced by Activex (see below).

ActiveX ActiveX refers to several object-oriented technologies in Microsoft that enable
component sharing by many application programs within a computer or among
computers in a networked environment. Historically, the definition of ActiveX
emerged from the implementation of earlier OCX, and OLE custom controls. The
term now encompasses several subsets of Windows component technologies and its
meaning changes depending on the application.

When most people say "ActiveX", they are likely talking about ActiveX controls —
specific components that provide applet-like functionality for web pages. Similar to
Java applets, ActiveX controls can be accessed and executed via web browsers and
other applications over the internet. However, ActiveX offers little cross-platform
support compared to Java, and is limited to software based on Microsoft’s
Component Object Model (COM).

D COM

COM COM (Component Object Model) is the framework for developing and supporting
program component objects in Microsoft Windows. While COM originally evolved
from Microsoft’s OLE technology, which provided services primarily for compound
documents, it now includes much more. COM provides the specification for
developing reusable software components as well as an underlying language-neutral
implementation for these objects to communicate with each other. Distributed COM
(DCOM) extends COM technology across networked computers. An in-depth
discussion of ProvideX COM is provided in the section describing ProvideX COM
Support, p.261.

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 252

Calling DLLs from ProvideX
As mentioned earlier, a DLL is essentially a free-standing library of functions
contained in a single file that allows different applications to run various shared
services. Applications use DLLs to access external functionality, such as that
provided as part of an API, by opening a DLL file and by calling each function
within the DLL as it is required.

ProvideX DLL Interface, p.252
Loading DLLs into Memory, p.253
Passing Values in a DLL Call, p.254
Converting Data To/From Local Representation, p.255
Examples, p.257
DLL Calls via WindX, p.259
Working with DLL Calls in UNIX/Linux, p.259

The functions that provide the services available within a large operating system API
are likely to be contained in a number of DLL files. For example, access to the
Microsoft Windows API, is handled via calls to the following primary DLL files:

gdi32.dll for graphics-oriented functionality
kernel32.dll for access to low level operating system features
user32.dll for controlling most visible screen controls.

As of Windows XP, these basic controls reside in comctl32.dll, together with the
common controls (Common Control Library).

Programmers must already know which functions are available and how to access
them if they plan to include DLL calls in their program's code. It is also important to
ensure DLL version compatibility and to acquire/consult the necessary API system
documentation in order to implement DLLs successfully.

ProvideX DLL Interface

In ProvideX, the DLL() function is used to load, find, and execute functions within
external OS-loadable modules. It provides a direct interface for both MS Windows
DLL files and UNIX/Linux shared object modules. The function TCB(196) will
return 1 to indicate that DLL() is supported for a particular UNIX/Linux
environment.

The general methods for using this function involve the following formats:

Accessing the DLL by name:

lib_num=DLL(ADDR lib_string$[,ERR=stmtref])

Topics

Warning: You can use third-party DLLs, but be certain of what you're passing and
getting back. Sage Software Canada Ltd. offers assistance on how to call a DLL, but will
not provide support for third-party DLLs. There is no validation on what you pass. Bad
pointers are liable to cause memory and data corruption, and may result in a GPF.

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 253

Accessing the DLL using its internal library identifier:

DLL(lib_num,fnc_name$,arg[,arg,arg...][,ERR=stmtref])

Accessing a function within the DLL by its memory address:

fnc_addr=DLL(FIND lib_num,fnc_name$[,ERR=stmtref])

Other formats for calling by string, library number, or function address are also
available. For complete syntax details, see DLL(), Language Reference p.416.

Loading DLLs into Memory

Typically, a DLL would be loaded and unloaded for each use; however, when
multiple calls are required to complete an operation, then that DLL should be loaded
into memory for the duration. This also speeds up DLL calls considerably.

The following provides an example of a single-use DLL. It sends a message (number
1047) to a ProvideX Window, then ProvideX internally traps a 1047 and exits.

x=DLL("User32.dll","SendMessageA",Handle,1047,0,0)

When multiple DLL calls are expected, then the ADDR directive can be used to load
the specified executable into memory. The example below shows a Windows
Registry operation where the DLL call involves placing the DLL into memory (via
ADDR). To perform such an operation, the DLL requires a handle to the registry. That
handle can then be used in subsequent DLL calls for specific operations. Failure to
return a handle would be considered a "resource leak".

! Read the Windows registry for a Key\SubKey\Name and
! return its current Value and Type of Value if you want it
!
function GetRegistryValue(RegKey%,RegSubKey$,Name$,Value$,ValueType%)
enter (RegKey%),(RegSubKey$),(Name$),Value$,ValueType%
if not(IsWin32) \
 then return 0
if RegKey%>=0 \
 then RegKey%+=dec(80000000)
RegSubKey$=sub(RegSubKey$,00,"")
Name$=sub(Name$,00,"")
Value$=""
ValueType%=0
if mid(RegSubKey$,1,1)="\" \
 then RegSubKey$=RegSubKey$(2)
if mid(RegSubKey$,-1)="\" \
 then RegSubKey$=RegSubKey$(1,len(RegSubKey$)-1)
RegSubKey$+=$00$
Name$+=$00$

Note: The [DLL] special command tag is not associated with the ProvideX DLL()
function (DLL interface). It is used as a prefix in an OPEN statement to denote that
ProvideX is to route all file I/O requests via an external (user-defined) DLL file.

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 254

SecurityMask%=9 ! KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS
dim KeyHnd$(4)
DllHnd=dll(addr "advapi32.dll",err=*proceed)
if DllHnd=0 \
 then return 0
if dll(DllHnd,"RegOpenKeyExA",RegKey%,RegSubKey$,0,SecurityMask%,KeyHnd$) \
 then result=dll(drop DllHnd,err=*proceed);
return 0
KeyHnd%=dec(swp(KeyHnd$))
dim DataValueType$(4,$00$)
dim DataValue$(256,$00$)
DataValueLength$=swp(bin(len(DataValue$),4))
error=dll(DllHnd,"RegQueryValueExA",KeyHnd%,Name$,0,DataValueType$,DataVa

lue$,DataValueLength$)
if not(error) then \
{ ValueType%=dec(swp(DataValueType$))
switch ValueType%
case 1,2,7
Value$=DataValue$(1,dec(swp(DataValueLength$))-1)
break
case 4,5,11
Value$=swp(DataValue$(1,dec(swp(DataValueLength$))))
break
default
Value$=DataValue$(1,dec(swp(DataValueLength$)))
break
end switch
success=1
}
result=dll(DllHnd,"RegCloseKey",KeyHnd%)
result=dll(drop DllHnd,err=*proceed)
return success

Passing Values in a DLL Call

As with any function call, you must define and pass the correct parameters in order
for the DLL to work. While some DLL functions are designed to take arguments that
can handle more than one data type, they normally would expect one of the following:

• Number without decimals (sent as integer).
• Number with decimals (converted to integer).
• String value (sent as pointer to the string).
In a 32 bit operating system, integers and pointers must be 4 bytes long.

Note: DLLs not placed into memory, are considered single use only. Attempting the
above operation without an ADDR, would result in most of the DLL calls failing.

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 255

DLL() Parameters
The arguments/parameters you use when you call the DLL() function are passed to
the function in the following ways:

All parameters being passed and returned should be defined in your code as
outlined in the documentation provided with the API/DLL you wish to implement.
Many DLLs expect a predefined format in the form of a data structure (see below).

Data Structures
To pass a data structure in a DLL call, format a string to the required size then pass
the string. In effect, this sends a pointer to the structure. Following is the MS
Window’s API reference to a WindowPlacement structure:

typedef struct _WINDOWPLACEMENT {
UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;
} WINDOWPLACEMENT

The above structure translates into ProvideX as follows:

DIM WindowPlacement$(4 + 4 + 4 + (4 + 4) + (4 + 4) + ((4 + 4) + (4 + 4)), 00)
! Or DIM WindowPlacement$(4 + 4 + 4 + 8 + 8 + 16, 00)
! Or DIM WindowPlacement$(44, 00)

UINT values are un-signed integers of a 32-bit value (4 bytes). The POINT is a
structure of two LONG values (each LONG is a 32-bit value); therefore, 8 bytes total
for a POINT structure. The RECT is a structure of 4 LONG values (each LONG is a
32-bit value); therefore, 16 bytes total for a RECT structure. If the structure contained
pointers, then you would leave room for a 4-byte value to hold the pointer.

Converting Data To/From Local Representation
Different CPUs and operating systems have different criteria for how numbers are
kept in memory. This is known as byte ordering. The order of the bytes in memory
are critical when using the DLL() function. Because memory is being directly
accessed, you must ensure the data you are putting in memory will be interpreted
correctly by the DLL; and conversely, when data is returned from the DLL, it must be
converted back into something usable.

Example Type 32-Bit Data Format Passed
X$ Strings Address of string
X Numeric Variables Double word value (32-bit)
X% Integer Variables 16-bit value passed as 32-bit
INT(X+1) INT() Function Standard 32 bit
X+Y Numeric Expression 32-bit value

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 256

When you pass a string or a number on the DLL() function line, ProvideX will
automatically convert the data into the form required. Since strings are passed as
pointers, ProvideX knows to convert the pointer itself into the local byte ordering
format. However, data within the string is your responsibility. ProvideX does not
know if it should convert the values within the string, or what those values
represent; therefore, it cannot convert data within a string to the local byte order.

Since a structure is a simple pointer to a memory location, and a specific number of
bytes in memory starting at that location, you need to convert items within the
structure to the local values.

Numbers within a string need to be converted, whether they are integers or pointers.
These functions can used to manipulate values prior to using them in the DLL call:

If you are defining a string that is a structure and that structure needs a pointer to a
piece of data, you would have to allocate space and convert the location of that data
in memory; e.g.,

Struct {
UINT DataLength;
char *pData;

} MyStruct
DIM Data$(255,$00$) ! Create a string in memory of the required length

and initialize it with NULLs.
pData = MEM(Data$) ! Get a memory pointer to the string
DataLength = LEN(Data$) ! Set the length of our data string
DIM MyStruct$(4 + 4, 00) ! Dimension our structure

The values must be put into the structure in order to pass the structure in a DLL
function call; e.g.,

MyStruct$(1,4)=SWP(BIN(DataLength,4)) ! Convert the length to a local
values and put it into the MyStruct$ structure

MyStruct$(5,4)=SWP(BIN(pData,4)) ! Convert the pointer to a local value
and put it into the MyStruct$ structure

Result = DLL("SomeDLL","SomeFunction",MyStruct$) ! Passes the memory
pointer of MyStruct$

If the DLL returns an updated structure, then the values will need to be converted
back into something usable as follows:

UpdatedLength = DEC(SWP(MyStruct$(1,4)))

SWP() Converts numbers to/from the local OS / CPU format.
BIN() Converts numbers into byte values; e.g., BIN(1234567,4) becomes

the 4 byte integer of 1234567.
MEM() Returns memory locations (pointers) for data and allows for direct

access to data in memory.
DEC() Converts byte values into numbers. Signed values are produced by

default, but for unsigned values use DEC(00+$..$).

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 257

In this case, Data$(1,UpdatedLength) would show the new value. Since the
pointer is passed to the Data$ variable, the DLL simply updates X number of bytes
at the location in memory of the Data$ string.

However, if the DLL function call modified the pointer to Data$, then the following
would be required to get the new pointer value, and read memory to get the new string:

pData = DEC(SWP(MyStruct$(5,4))
Data$ = MEM(pData, UpdatedLength)

This reads memory at the location given in the MyStruct$ for the data, and reads
for the length given.

By using the SWP() function, ProvideX automatically swaps the number to or from
the local byte ordering format. Whether it is for an Intel or Power PC CPU, SWP()
defaults to the correct format for the processor. It is possible to override the byte
ordering format with an option to the SWP() function.

Examples The following examples illustrate use of the functions described in the earlier
sections for working with Windows DLLs in ProvideX. For examples of
UNIX/Linux function calls, see Working with DLL Calls in UNIX/Linux, p.259.

Example 1. The following statement swaps the left and right mouse buttons:

0010 A=DLL("USER32.DLL","SwapMouseButton",1) ! Passes 32-bit value

An integer value of zero swaps the mouse buttons back.

Example 2. Pointers are commonly used to pass string values, usually terminating
with a null byte. This passes a pointer to a DLL to return the handle of a window
with the title Notepad:

0030 A=DLL("USER32.DLL","FindWindowA",0,"Notepad"+00)

Example 3. Sometimes a pointer refers to a region of memory or a structure to
receive information from a DLL. You must pre-allocate a string variable to receive
the data. The example below returns the window title, given the handle. The
returned string terminates with a null byte (00):

DIM X$(256)
0030 A=DLL("USER32.DLL","GetWindowTextA",Hndl,X$,LEN(X$))

Example 4. To pass a pointer to a number, define a two- or four-byte string and read
the value after swapping the bytes, as follows:

DIM X$(256)
A=DLL("SOME.DLL","GetSomething",Hndl,X$)
X=DEC(00+SWP(X$)

Example 5. Program DLLS1 in this example starts Notepad, locates the handle and
closes the window handle:

0010 !dlls1 Start Notepad and Close It
0020 INVOKE "NOTEPAD"
0030 INPUT "Press enter after Notepad has started ",X$

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 258

0040 LET HWND%=DLL("USER32.DLL","FindWindowA","Notepad"+00,0)
0050 IF HWND%<=0 THEN PRINT "Notepad not found!"; STOP
0060 LET WM_CLOSE=DEC(0010),WPARAM%=0,LPARAM=0
0070 LET X=DLL("USER32.DLL","SendMessageA",HWND%,
0070:INT(WM_CLOSE),WPARAM%,LPARAM)

Example 6. The following example illustrates inter-task communication. The
program DLLS3 starts a second PVXWIN32 session, finds its Window handle, sends
CTL values 101 through 103, defines an atom (pointing to a string variable in a
global string table) and passes the atom reference to the second session. Then it waits
for the second session to terminate.

1340 X=DLL("USER32.DLL","SendMessageA",HWND%,INT(WM_USER),WPARAM%,LPARAM)

00010 ! DLLS3 - Inter-task communication - Send CTLs & a string
00020 MAX_COL=MXC(0)+1,MAX_ROW=MXL(0)+1
00030 PRINT 'SHOW'(-1),'DIALOGUE'(0,0,MAX_COL,INT(MAX_ROW/2)-1, \
 "Inter-task com0030:munication",'MODE'($000F$)+'CS'),
00040 IF ARG(1,ERR=*NEXT)="Receiver" \
 THEN GOTO RECEIVER
01000 ! !^1000
01010 LOOP=0
01100 ! !^100 - Find Receiver & start if necessary
01110 IF LOOP++>1 \
 THEN PRINT "Cannot start/find the Receiver!";
 STOP
01120 HWND%=DLL("USER32.DLL","FindWindowA",0,"PVXWIN32 - Receiver"+00)
01130 IF HWND%>0 \
 THEN GOTO 1200
01140 INVOKE ARG(0)+" "+PGN+" -ARG Receiver"
01150 WAIT 1
01160 GOTO 1100
01200 ! !^100 - Send CTL 101 to 103 to Receiver
01210 WM_USER=DEC(0400),WPARAM%=0,LPARAM=0
01220 FOR WPARAM%=101 TO 103
01230 PRINT "Sending CTL value of",WPARAM%," to Receiver"
01240 X=DLL("USER32.DLL","SendMessageA",HWND%,INT(WM_USER),WPARAM%,LPARAM)
01250 NEXT
01300 ! !^100 - Send CTL 104 & the address of a String
01310 WM_USER=DEC(0400),WPARAM%=104,LPARAM=0
01320 ATOM$="Message to

Send",LPARAM=DLL("KERNEL32.DLL","GlobalAddAtomA", \
 ATOM$+$00$)
01330 PRINT " Sending CTL Value ",WPARAM%,"to Receiver with message:", \
 'BR',ATOM$,'ER'
01340 X=DLL("USER32.DLL","SendMessageA",HWND%,INT(WM_USER),WPARAM%,LPARAM)
02000 ! !^1000
02010 LOOP=0;
 PRINT "Waiting for Receiver to shutdown",
02020 HWND%=DLL("USER32.DLL","FindWindowA",0,"PVXWIN32 - Receiver"+00)

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 259

02030 IF HWND%<=0 \
 THEN GOTO 2100
02040 PRINT ".",;
 IF LOOP++<30 \
 THEN WAIT 1;
 GOTO 2020
02100 ! !^100
02110 X=DLL("KERNEL32.DLL","GlobalDeleteAtom")
02120 PRINT 'DROP'(-1),'SHOW'(2),
02130 STOP
03000 ! !^1000 - Receive CTL values from Sender
03010 RECEIVER:
03020 PRINT 'CAPTION'("PVXWIN32 - Receiver"),'MOVE'(0,INT(MAX_ROW/2)+1),
03030 INPUT "Press F4 when finished ",*;
 PRINT @(0),'BR',"Received CTL=",CTL,'ER','CL'
03040 IF CTL=4 \
 THEN GOTO 3200
03050 IF CTL<>104 \
 THEN GOTO 3030
03060 ATOM=TCB(81) ! Atom identifier
03070 DIM ATOM$(512)
03080 X=DLL("KERNEL32.DLL","GlobalGetAtomNameA",ATOM,ATOM$,LEN(ATOM$))
03090 X=DLL("KERNEL32.DLL","GlobalDeleteAtom") ! Release Atom
03100 X=POS(00=ATOM$);
 IF X \
 THEN ATOM$=ATOM$(1,X-1)
03110 PRINT "Received: ",'BR',ATOM$,'ER'
03120 GOTO 3030
03200 ! !^100
03210 STOP

DLL Calls via WindX
Be aware of the following issues when accessing DLLs from within WindX:

• Know where to find the data – is it on the client or the server?
• Do not pass pointers to data if they exist on a server to a DLL call that is being

handled by a WindX workstation.
• DLLs on a WindX workstation cannot access a memory location on the server.
• It is often best to encapsulate DLL work into a single program that can be called

from the server via the [WDX] command tag; e.g., CALL "[WDX]...
More information on this subject can be found in the ProvideX Client Server Reference.

Working with DLL Calls in UNIX/Linux
As mentioned earlier, the function TCB(196) will return 1 to indicate UNIX/Linux
support. One of the primary conditions for this feature is that the libraries accessed
must be shared. This is demonstrated by the suffix ".so".

9. External Components Calling DLLs from ProvideX

ProvideX User’s Guide V8.30 Back 260

By typing "info libc" at a shell prompt on a Linux machine, the info command
will return all the information held in the library. Choose the feature within the
library you wish to use, and then access the library.

In the following example, the getpwnam command is used from the lib.so.6 on a
Red Hat system. When the man pages for getpwnam are examined, the format is as
follows: Struct passwd *getpwnam(const char *name);

The result is a pointer to a structure containing the fields of the record in the
password database. The structure is as follows:

Char *pw_name user name
Char *pw_passwd User password
Uid_t pw_uid User ID number
Gid_t pw_gid User Group number
Char *pw_gecos Real Name
Char *pw_dir Home Directory
Char *pw_shell Shell Command

The * asterisk marks the field as a pointer.

0010 ! ACCESS_LIBRARY
0015 INPUT "Enter user name ",NAME$
0017 PW_GID=0,PW_UID=0
0020 LIBRARY$="libc.so.6" ! Shared object library on Red Hat Linux
0030 LET SOME_VARIABLE=DLL(ADDR LIBRARY$,ERR=*NEXT);GOTO 50
The purpose of the ADDR is hold the library in memory.
0040 ! Could not open the library.
0045 GOTO WRAP_UP
0050 LET STS_OF_CALL=DLL(FIND SOME_VARIABLE,"getpwnam",ERR=*NEXT);GOTO 70

This statement finds the "C" library call in the library opened with the handle of
SOME_VARIABLE.

0060 GOTO WRAP_UP
0070 DIM X_NAME$(64,$00$);LET MID(X_NAME$,1,LEN(NAME$)=NAME$
0080 LET X=DLL(*,STS_OF_CALL,X_NAME$)
0090 IF X=0 THEN LET NAME$=NAME$+" INVALID";GOTO WRAP_UP

After looking at the structure of the return value the memory will need to be assigned.

0100 LET X$=MEM(X,(5*TCB(301))+(2*TCB(306)))

This returns 5 pointers and two integers.

110 PW_UID=DEC(00+SWP(X$(TCB(301)+TCB(301)+1,TCB(306))))

The decimal value of the swapped memory location represents the user ID number.
The TCB(301) is the pointer size and the TCB(306) is the integer size made available
because of 64 bit OS.

120 PW_GID=DEC(00+SWP(X$(TCB(301)+TCB(301)+TCB(306)+1,TCB(306))))
150 WRAP_UP: ! WRAP UP
160 PRINT NAME$,STR(PW_UID:"###"),STR(PW_GID:"###")

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 261

ProvideX COM Support COM Support

The COM interface in ProvideX allows developers to integrate external components
produced by third-party vendors into their ProvideX applications in MS Windows. It
provides convenient syntax for obtaining information about, as well as access to, the
internal properties and methods of a Component Object Model (COM) object. This
functionality is carried out via the COM automation standard, which is an
implementation of the IDispatch interface in Windows. (This was commonly known as
OLE automation in earlier Windows versions.)

When an application or library supports automation, the objects exposed by the
application can be accessed through the ProvideX COM interface and manipulated
to invoke their methods and get or set their properties. For example, a spreadsheet
application might expose a worksheet, chart, cell, or range of cells, each as a different
type of object; and a word processor might expose objects such as applications,
documents, paragraphs, bookmarks, or sentences.

Referencing a COM Object, p.263
Accessing an Object’s Properties and Methods, p.266
Extended Properties and Methods, p.269
Extended Objects, p.272
COM Error Handling, p.285
Advanced Usage, p.286
Comparisons with Visual Basic, p.288
Examples, p.290

COM Concepts
The following terms/definitions apply to automation and the ProvideX COM interface:

Topics

Control An object that exposes a user interface; e.g., a dialogue with OK and
Cancel buttons can be implemented as a control. These are now typically
based on ActiveX vs. the older OLE control technology (OCX).

Object Any item that can be programmed, manipulated or controlled.
Interfacing with an object is done through property setting and getting,
and calling of methods.

Property A property is a characteristic of an object (an adjective). For example,
properties of a Textbox object might include: Name, Visible,
Forecolor etc.

Method A function that performs an action on an object (a verb). For example, an
Application object might expose a Close method.

Instantiation To create an instance of (instantiate, define, name) an object.
Binding The process of connecting property and method calls to an object.
Late Binding Obtaining a reference to an object without any prior information about

the object. Property and method names are resolved at run time. This is
the binding style used by ProvideX.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 262

To program against an object, a reference to that object must first be obtained. This
process is commonly referred to as binding. Unlike other languages, ProvideX
simplifies this process by providing one statement that can be used to create new
objects, reference running objects, and connect to remote objects.

The following illustration outlines the processes involved in the access and
manipulation of COM objects in ProvideX.

Communication between an application and a COM object is performed either by
reading or writing the object’s properties or by invoking methods within the object.
The ProvideX Apostrophe Operator (a.k.a. tick) is used to access properties within a
COM object and invoke its methods. See Accessing an Object’s Properties and
Methods, p.266.

The ProvideX commands used in the handling of COM objects are as follows:

DEF OBJECT Directive used to create a new instance of a COM object. See
Referencing a COM Object, below.

DELETE OBJECT Directive used to disconnect from a COM object. See Releasing
an Object Reference, p.266.

DROP OBJECT Alternative to DELETE OBJECT directive. The two directives may
be used interchangeably in ProvideX applications.

ON EVENT Directive used to process COM control events in a ProvideX
application. See Event-Driven COM, p.294.

FUNCTION Directive supports the FOR EVENT keywords for setting a
method to be processed for a particular incoming event. See
Event-Driven COM, p.294.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 263

Referencing a COM Object

The DEF OBJECT directive is used to create a new instance of a specified object.
DEF OBJ ECT

DEF OBJECT obj_id,[@(col,ln,wth,ht)]{, |=} obj_name$ [;LICENSE=key]
[;FINALIZE=method] [,ERR=stmtref]

Where:

Upon successful execution of DEF OBJECT, a reference to the object obj_name$ will be
placed into the supplied numeric variable obj_id. Leave out the column and line
coordinates for non visible objects. Use "*" to list all registered COM controls.

Object Name Contents
The options below may be used in the DEF OBJECT obj_name$ string. Square
brackets are part of the statement's syntax (see Example Statements, p.265).

@(col,ln,
wth,ht)

Numeric expressions. Column and line coordinates for top left
corner, width in number of columns and height in number of
lines.

FINALIZE=method Optional method name of the object instance to be run upon
release of the object. See Finalize Method, p.265.

LICENSE=key Optional license key that should be applied when attempting
to bind to an object. See Using Licensed Objects, p.265.

obj_id Numeric variable that will be used to save the object reference.

obj_name$ String expression identifying the object to be referenced, as
well as any object-specific parameters. See Object Name
Contents, p.263.

ERR=stmtref Optional program line number or statement label to which to
transfer control in case of error. If an error occurs during the DEF
OBJECT statement, the error code will always equal 12. Use the
MSG(-1) function to obtain further details on the failure.

* Use an * asterisk to display a pop-up window listing all
32-bit COM controls installed on the system.

CLSID Class identifier (GUID) for the object in the format
{hhhhhhhh-hhhh-hhhh-hhhhhhhhhhhh}, where the h
indicates a hexadecimal character.

progID Programmatic identifier name for the object. An example
of this is Word.Document.

[DESIGN]filename.XML Indicates that a previously saved OLE/ActiveX control
definition should be loaded from the specified .XML file.
For more information, see PVXSAVE, p.272.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 264

[DCOM]server;name Indicates that the object is located on a remote system. server
parameter is optional, and can be specified either by name,
or by IP address. If not supplied then the object is considered
local. name parameter is the CLSID or progID for the object.

[FILE]x:\filename Indicates that the object should be created using the
specified file name. An example of this would be a
Microsoft Word document file.

[GETOBJECT]name Indicates that ProvideX should bind to a running instance
of the named object. name parameter is the CLSID or progID
for the object or a file-based moniker. File monikers are
commonly used when dealing with WMI, LDAP, and
related services in Windows.

[GLOBAL]name Indicates that a reference to an object exposed by the use of
PvxMakeGlobal should be obtained. The name parameter
is the name used to expose the object.

[REGISTER]x:\filename;name
Ensures that the object information is properly registered
before attempting to create an instance of the object.
x:\filename parameter is the name of the executable file or
library that exposes the automation object. name parameter
is the CLSID or progID for the object.

[RUNNING]name Indicates that ProvideX should bind to a running instance of
the named object, where name is given as CLSID or progID.
An error occurs if the object is not currently running.

[RUNNING OR NEW]name
Indicates the same functionality as [RUNNING] syntax;
however, if the object is not currently running, ProvideX
attempts to create a new instance of the named object.

[PICTURE]* Indicates creation of an empty IPicture object.

[PICTURE]filename Indicates that an IPicture object should be created and the
specified image file should be loaded by the object.

[PICTURE]*[#]name;{BMP|CUR|ICO}
Indicates that an IPicture object should be created and
specified resource contents loaded by the object. For numeric
resources, name should be prefixed with a #; e.g., #101. The
image type is specified as the second parameter, and indicates
the resource group that contains the desired resource.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 265

Using Licensed Objects
Redistribution of a third party COM control may sometimes require the use of a
license file (usually identified by a.lic extension). The license file usually permits
developer-level access to the control and is not for redistribution. In some cases, a
license key must be extracted from the license file in order for the control to function
in run-time mode.

The following steps outline how to extract the license key from the license file, and
how to make it available in a run-time environment:

1. On the system where the COM object and license file have been installed, obtain a
reference to the object without specifying the license information.

2. Query the PvxLicense$ property of the object for the license key. If the object is
licensed, the key data is returned as a string of hex characters.

3. Add the LICENSE=key data to the DEF OBJECT statement.

Once the new DEF OBJECT statement has been generated, the object reference can
then be obtained on systems that do not have the license file installed.

Finalize Method
A method of the object instance can be specified to run when the object is released.
This method should not require any parameters to be passed to it. This is intended to
simplify the handling of automation "servers" (such as Word or Excel) that require
the Quit() method to be executed in order to shut down the server. By specifying a
finalize method, the Quit() method (or similar) of an object does not need to be
called in order to free resources. See Releasing an Object Reference, p.266.

Example Statements
The following are examples of DEF OBJECT statements:

DEF OBJECT X, "*"
DEF OBJECT X, "Word.Application;Finalize=Quit", ERR=*NEXT
DEF OBJECT X, @(1,1, 70, 20)="Word.Document"
DEF OBJECT X, "[DCOM]MyServer;Shell.Explorer"
DEF OBJECT X, @(10, 2, 20, 10)="[File]c:\my documents\test.doc"
DEF OBJECT X, "VCF1.VCF1Ctrl.1;License=1234567890ABCDEF..."
DEF OBJECT X, "[Running or New]Excel.Application"
DEF OBJECT X, "[Picture]*PVXHAPPY;cur"
DEF OBJECT X, @(40, 1, 40, 15) = "[Design]chartfx.xml"
DEF OBJECT X, "[GetObject]winmgmts:\\.\servername\root\cimv2"

The DEF OBJECT statement can also be used to bind child objects which are returned
as the result of either a property access or method call. The syntax is as follows:

DEF OBJECT X

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 266

Releasing an Object Reference

In order to manage the life time of an object, the ProvideX developer has been
provided with the DELETE OBJECT statement.

DELETE OBJECT

DELETE OBJECT obj_ID[,ERR=stmtref]

Where:

The DELETE OBJECT statement takes one parameter, which is the ProvideX variable
that has been bound to an object reference. After execution of this statement, the
reference to the object is terminated, and the object is released from memory.

When dealing with automation "servers" (multi-client applications such as MS Word
or Excel), it may be necessary to execute a method of the object in order to close the
application; e.g., for MS Office applications, this method is Quit(). If a FINALIZE=
method was specified in the DEF OBJECT statement, the method name will be
executed automatically before the object is released.

Accessing an Object’s Properties and Methods

Once a reference to an object has been obtained, the next step would be to
manipulate or control the object. Use the tick-star ('*) internal property to find out
which properties and methods are available:

PRINT obj_ID'*

This statement returns a comma separated list of all exposed properties and methods.
Methods are indicated by having trailing parentheses "()" appended to their name.

This list is merely an overview of the object, and does not include data type or
parameter information.

Proper object documentation is very important. Without proper documentation, it
will be impossible to tell:

• What parameters are to be passed to methods

• What return values can be expected from properties or methods

• What parameters are considered by reference, vs. those that are by value

obj_ID Numeric variable name of object reference.

stmtref Program line number or statement label to which to transfer control.

Note: For child objects, it is an error to perform a DELETE OBJECT if a DEF OBJECT
has not been performed first. All child objects will be automatically released from
memory when the parent object is released.

Note: Some objects return a listing that only contains the ProvideX extended
properties and methods (explained later). This occurs when the object does not expose
run-time type information.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 267

• What method parameters are optional

• What properties are indexed, and what data types are used for the indexes.

Sage only provides support for the ProvideX object interface. Specific interface
information for an object must be obtained from the respective vendor.

Retrieving Property Values
To retrieve a property value, place the object variable and property name on the right
hand side of the assignment:

variable=object'property[$]

Automation is case insensitive; therefore, a property name can be written in upper,
lower, mixed, or proper case. If the property is to return a string data type, then a $
symbol should be placed at the end of the property name. Properties may also be
collections or arrays, which would require a slightly different syntax when retrieving
values:

variable=object'property.get[$](index[$], …)

The .get that is appended to the property name indicates to ProvideX that this is a
property, and not a method call. For string type properties, the $ symbol should be
placed at the end of the .get and before the open parentheses. The index parameter
indicates the property element to retrieve. Unlike ProvideX arrays, the index for the
property might not be a numeric data type (check the object documentation).

Example:

STYLE=DOCUMENT'Styles.get("Normal")

Where Styles is a property and "Normal" indicates the indexed value to retrieve.

Assigning Property Values
To assign a property value, place the object variable and property name on the left
hand side of the equation:

object'property[$]=variable

Automation is case insensitive. Therefore, a property name can be written in upper, lower,
or mixed case. If the property is to return a string data type, then a $ symbol should be
placed at the end of the property name. Properties may also be collections or arrays, which
would require a slightly different syntax when assigning values:

result=object'property.put(index[$], …, data[$])

This syntax is identical to a method call, but with a few exceptions. The result of the
property assignment is always zero, and it can be disregarded. The .put indicates to
ProvideX that this is a property, and not a method call. And finally, the data to be
assigned to the property is passed in as the last parameter between the parentheses.

Note: Some objects allow indexed property access without specifying .get notation.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 268

This syntax style is also required when assigning an object to a non-index/non-array
property. The reason for this is due to a syntax conflict in ProvideX, where the
following would be invalid:

object'property=*other_object

The correct syntax for the above example would be:

result=object'property.put(*other_object)

There may also be cases where the property assignment is expecting to be set by
reference. A common example occurs when an object property is changed to refer to
a new object. For most properties that are object types, the .put syntax will work
correctly. If an error does occur, then the following syntax should be tried:

result=object'property.putref(*otherobject)

Calling Methods
To call a method, place the object variable, method name, and parameter list on the
right hand side of the equation:

result=object'method[$] (param1, param2 [, …])

Automation is case insensitive; therefore, a method name can be written in upper,
lower, mixed, or proper case. If the method is to return a string data type, then a $
symbol should be placed at the end of the method name. Some methods are written
to accept optional parameters. In ProvideX, these would be passed using an *
asterisk. For further details, see Passing Optional Parameters, p.287.

Invocation Hints
Due to ProvideX syntax restrictions, desired control of how a method is invoked and
how data is returned, a set of invocation hints have been developed that can be used to
direct the control of the COM interop layer. The valid invocation hints are listed below:

Note: When assigning or passing an object, it is required that an asterisk (*) appear
before the object reference. This allows ProvideX to differentiate between a variable
holding a numeric value, and one that holds an object reference.

.GET Indicates that the call should be performed as a property "get". This is
normally required when dealing with indexed properties, as the syntax
of the statement is translated as a call; e.g.,

S$ = OBJ'CELLS.GET$(1, 2)

.PUT Indicates that the call should be performed as a property assignment.
This is normally required when dealing with indexed properties, as the
syntax of the statement is translated as a call; e.g.,

OBJ'CELLS.PUT$(1, 2, S$)

This syntax is also required when assigning an object to a property; e.g.,

OBJ'SELRANGE.PUT$(*X)

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 269

These hints are added to the end of a method/property name so that the call reads as
object'method{.hint}(parameters). If you attempt to get or set array properties
without using an "invoke hint", the DLL will attempt to resolve the calling type;
however, it can only do this by trial and error (up to 4 separate attempts).

The following is an example of a grid object that exposes a CELL property that is
accessed using a row and column indicator:

10 DATA=GRID'CELL.GET(ROW, COL) ! Get the cell value
20 DATA= DATA+10 ! Add 10 to the value
30 NULL=GRID'CELL.PUT(ROW, COL, DATA) ! Set the cell value

For speed reasons, as well as clarity, the developer should always specify a hint
when calling a property using the syntax of a method call. In the previous example,
line 30 should be changed to:

30 NULL=X'VAL.PUT(*Y) ! Assign object Y to X'VAL

Extended Properties and Methods
During the development of the ProvideX COM interface, it was realized that
developers may require information and helper functions that are not exposed by all
COM objects, such as the container window handle, or the internal COM object class
name, etc. To accommodate this, a set of properties and methods were created for
access by all COM objects instantiated in ProvideX. The DLL handles the execution

.PUTREF Indicates that the call should be performed as a property reference
assignment. This is normally required when assigning an object
reference to an object's property.

.CALL Indicates the call should be performed as a method only. Normally, the
COM interop layer will attempt (through trial and error), to resolve the
call as either a method or property.

.GETB$ Indicates that the returned property data, if a string type, should not be
converted from double byte to ANSI string.

.CALLB$ Indicates that the returned method data, if a string type, should not be
converted from double byte to ANSI string.

.GETV Indicates that the returned property data should be returned as
variant vs. its base data type. Do not use on a property that returns an
internal object; e.g., *CONSTANT, *PROXY, *ERROR, *MASTER, etc. are
internal objects that cannot be expressed in a variant.

.CALLV Indicates that the returned method data should be returned as
variant vs. its base data type. Do not use on a method that returns an
internal object; e.g., *CONSTANT, *PROXY, *ERROR, *MASTER, etc. are
internal objects that cannot be expressed in a variant.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 270

of these internally, but to the developer, they function identically to the other COM
properties and methods of the object. Following is a list of additional COM members
available for use with ProvideX.

PVXALIAS(member$, user$)
Method Call. This method takes two string parameters. The first,
member$, indicates the actual COM member name to alias. The
second, user$, is the user-defined alias name to use. Upon success,
the object can be accessed using the alias name in place of the actual
name. For example, if an object had a property called DAY, an Error
20 would occur when attempting to access it. To correct this:
Z = OBJECT'PVXALIAS("DAY", "_DAY")
A$ = OBJECT'_DAY$

PVXALLOCRECORD(RecordName$)
Method Call. This method allocates an instance of a record
specified by the RecordName$ parameter. For a list of available
record types, see PVXRECORDS$.

PVXCONSTANTS Read Only Property. This property is used to return a
*CONSTANTS object that is built from the current object's type
library enumerated constants. The returned *CONSTANTS
object will expose all constant values as read only properties.
The *CONSTANTS object is described in more detail under
Extended Objects, p.272.

PVXDESCRIBE$(member$)
Method Call. This method accepts one string parameter,
which is the actual COM member name to "describe" (requires
type information to be available). If successful, returns a multi
line string of information describing the member, its return
type, as well as parameters and their types. This can also be
used to display field information for record type objects by
passing the field name in the member$ parameter.

PVXDOVERB(verb) Method Call. This method takes one numeric parameter
which is the verb to perform on the COM control. If the object
does not expose a control, then no action is performed.
Common verbs are as follows: Primary (0), Show (-1), Open
(-2), Hide (-3) , UIActivate (-4), InPlaceActivate (-5),
DiscardUndoState (-6).

PVXERROR[$] Read Only Property. Returns the last error code, or message
(depending on $ suffix) that occurred when accessing a
property or method of the object.

PVXEVENTS[$] Read Only Property. Returns the ProvideX class object that is
handling events, or it provides a list of events names (depending
on $ suffix), for the object. See Event-Driven COM, p.294.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 271

PVXEXTDATA[$] Read Only Property. This property provides buffering for
returned string data that exceeds 32K. If a result returns more
than 32K of data, the first 32K bytes will be returned, and the
remaining data can be accessed via this property. The numeric
value is the amount of data remaining in the buffer, the string
value is the next 32000 bytes, or whatever is remaining.

PVXFOREACH Read Only Property. This property is only valid for objects
that expose a collection (IEnumVariant), or *VARARRAY
objects that contain a single array dimension. Attempting to
read this property for any other object type will return an
error. On success, a *FOREACH iterator object will be returned
that allows traversal of the object's data. The *FOREACH object
is described under Extended Objects, p.272.

PVXFREE(["children"])
Method Call. This method will release the instance of the object.
This is useful for sub objects, when DEF OBJECT has not been
called. It also accepts one optional string parameter, which if
passed, should be set to "children". This will cause all the children
of the object to be released, but will not release the object itself.
Any other setting will cause the object to be released.

PVXHANDLE Read Only Property. Returns the window handle for the
container window that is hosting the control. If the object is
not a control, a zero will be returned.

PVXHEIGHT Read / Write Property. Used to set the height, in pixels, of a
control. If the object is not a control, then setting this property
has no effect, and reading this value will return a value of (-1).

PVXID Read Only Property. This property returns the interop handle
to the object. It can be assigned to another integer variable,
which can then be used in a DEF OBJECT statement. This is
useful for situations in WindX where the ProvideX local
variable goes out of scope.

PVXISA$ Read Only Property. Returns the internal COM class interface
name from the associated type library, if available. If no type
library is available, a blank string is returned.

PVXLEFT Read / Write Property. Used to set the left border, in pixels, of
a control. If the object is not a control, then setting this
property has no effect and reading this value will return a
value of (-1).

PVXLICENSE$ Read Only Property. Returns a hexadecimal string for objects
that utilize license keys (providing the key is available). This
string can then be used in a DEF OBJECT statement, which will
allow the code to create an instance of the object without the
key being available (runtime client sites).

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 272

Extended Objects
Extended objects complete the COM functionality and provide a mechanism for
future enhancements. These pseudo objects are instantiated in the same way as all
other COM objects within ProvideX, except for the fact that an asterisk must preface
the object name; i.e.,

DEF OBJECT "*{extended name}"

PVXMAKEGLOBAL(global$)
Method Call. This method accepts one string parameter,
which is the name to make "global". If successful, another
ProvideX session can access this object though a DEF OBJECT
statement using the [GLOBAL] parameter. This allows a
ProvideX session to expose objects to other sessions in a server
like fashion. This is only valid for COM based objects.

PVXMODE Read / Write Property. For controls that differentiate between
development and run time mode, this is used to set the "user
mode" state. Setting this to zero will place the control in
development mode, any other value will place it into run time
mode. If the object is not a COM control, then setting this
property has no effect.

PVXNAME Read Only Property. Returns the string used to create the
instance of the object. For sub objects, the string also includes
the property/method names.

PVXPARENT Read Only Property. Returns the parent handle (interop id,
also see PVXID) for the object, or zero if the object is top level.

PVXRECORDS$ Read Only Property. Returns a comma delimited list of record
type names that are available from the type library associated
with the calling object.

PVXSAVE(FileName$)
PVXSAVE

Method Call. Used for saving a control's design time property
set. On success (return not zero), the property set will have
been saved as XML content within the specified file. This
allows a developer to modify a control during design time,
and to then reload it using the [DESIGN] option later.

PVXTOP Read / Write Property. Used to set the top border, in pixels, of a
control. If the object is not a control, then setting this property
has no effect and reading this value will return a value of (-1).

PVXTYPELIB$ Read Only Property. Returns the file name that exposes type
information for the object. (type information must be available).

PVXWIDTH Read / Write Property. Used to set the width, in pixels, of a
control. If the object is not a control, then setting this property
has no effect and reading this value will return a value of (-1).

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 273

It should be noted that while these objects appear identical to other COM objects,
they are not COM based in nature. This means that extended objects: do not expose
events, do not expose controls, cannot have member information "described", and
cannot be made global to other processes.

Also note that the *FOREACH, *RECORD, and *CONSTANTS object types are not able
to be directly created. These object types are returned (respectively) as results from
PVXFOREACH, PVXALLOCRECORD and PVXCONSTANTS (see Extended Properties
and Methods).

The currently supported (internal) extended objects are listed below:

These extended objects are described in detail in the sections that follow.

*CONSTANTS
The goal of the constants object is to expose all the enumerated constant values from
an object's type library. For example, Microsoft Word exposes over 1100 constants
from its type library. Attempting to use any of these values would require the
developer to research the type library to locate the constant name, in order to find its

*CONSTANTS Provides a mechanism for exposing all enumerated constant
values from an object's type library.

*ERROR Wrapper export for last error information.

*FOREACH Wrapper around an IEnumVariant interface, which is more
commonly referred to as a "collection". ProvideX allows this
wrapper to be created on both collection objects as well as single
dimension COM SafeArrays. Provides a means of iterating data
without regards to the lower or upper bounds of the container.

*GLOBAL Provides an enumerator for the system wide list of objects
exposed using PvxMakeGlobal.

*MASTER Serves as a system object for the interop layer. Provides object
iteration capabilities, version information, etc.

*PROXY Allows the developer to expose instantiated ProvideX objects
directly to the COM world.

*RECORD Wrapper around an IRecordInfo interface, which is also
referred to as a COM user defined type (record structure).

*VARIANT Wrapper around an OLE variant data type. Provides a means for
passing data by reference, as well as converting data from a
ProvideX type to Automation types.

*VARARRAY Wrapper around an OLE safe array of variants. Provides a
mechanism for COM array data handling.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 274

associated value. The developer would then be forced to code these constants into
his/her program in order to use them. Using the constants object provides the
following benefits:

• Coding effort is reduced, as a single constants object contains all constant values
from a type library.

• The developer can refer to the constant values by name, which makes transposing
code (e.g. from VB, etc.) a much simpler task.

The following belong to the *CONSTANTS object:

The following example demonstrates how to acquire an instance of a constants object
and then utilize a constant value in code.

0010 DEF OBJECT WORD, "Word.Application;Finalize=Quit"
0020 LET WORD'VISIBLE = 1
0030 LET WORDCONSTS = WORD'PVXCONSTANTS
0040 LET KEYCODE = WORD'BUILDKEYCODE(WORDCONSTS'WDKEYALT,

WORDCONSTS'WDKEYF1)
0050 WORDCONSTS'PVXFREE()
0060 ESCAPE
0070 DELETE OBJECT WORD

*ERROR
This static table is exposed as another internal object. It can be DEF'ed after an error
has occurred and will still contain the last error information. One note in regards to
this class: while multiple instances can be created, they all point to the same data
block; i.e., clearing one *ERROR object will in effect clear all other instances. The
following members belong to the *ERROR object:

{CONSTANTNAME} Read Only Property. All constant names from a type
library are exposed as read only properties. The return
type for each constant value will be an integer.

CLEAR() Method Call. Clears the last error information.
CODE(Number) Method Call. Returns the OLE code for the passed number,

which is treated as an HRESULT to evaluate. If no parameter
is passed, the code for the OLEERROR property is returned.

DESCRIPTION$ Read Only Property. Contents depends on if the last error
was DISP_E_EXCEPTION or not. If so, it returns the object
defined message. If not, it returns the string representation of
the OLE HRESULT based on the OLEERROR property.

FACILITY(Number) Method Call. Returns the OLE facility for the passed number,
which is treated as an HRESULT to evaluate. If no parameter is
passed, the facility for the OLEERROR property is returned.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 275

*FOREACH
When dealing with collections, one of the biggest pitfalls is determining if the
collection index is zero or one based. To aid the developer, an enumerator object of
*FOREACH is made available from all collection objects (that expose the
IEnumVariant interface). To access this object, the PVXFOREACH property must be
queried; e.g.,

FOREACHOBJ = OBJECT'PVXFOREACH

Once returned, the *FOREACH object can be used to access each element in the
collection. In addition to collections, the interop layer also allows the developer to
obtain a *FOREACH object from an instance of a *VARARRAY object, providing the
underlying COM SafeArray only contains a single dimension.

The following members belong to the *FOREACH object:

HELPCONTEXT Read Only Property. If last error code was
DISP_E_EXCEPTION, then this property will return the
associated help context number, if available.

HELPFILE$ Read Only Property. If the last error code was
DISP_E_EXCEPTION, then this property will return the
associated help file name, if available.

NUMBER Read Only / Default Property. Returns last object code set
for a dispatch call that failed with DISP_E_EXCEPTION.

OLEERROR Read Only Property. Returns the last OLE HRESULT code
that was raised.

SEVERITY(Number) Method Call. Returns the OLE severity for the passed number,
which is treated as an HRESULT to evaluate. If no parameter is
passed, the severity for the OLEERROR property is returned.

SOURCE$ Read Only Property. If the last error code was
DISP_E_EXCEPTION, this property will return a textual,
human-readable name of the source of the exception, if
available.

Note: A *FOREACH object obtained from an array becomes a snapshot of the original
array. Any changes to the original array will not be reflected during enumeration.

DATA[$] Read Only / Default Property. Returns the item data that
was returned from a call to NEXT(). The actual data type
depends on the collection or array item being enumerated.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 276

The following example demonstrates how to acquire an instance of a *FOREACH
object and then enumerate all items in a collection:

0010 DEF OBJECT WMI, "[GetObject]winmgmts:\\.\root\cimv2"
0020 LET ITEMS = WMI'EXECQUERY("Select * from

WIN32_NetworkAdapterConfiguration where IPEnabled = True")
0030 LET ITER = ITEMS'PVXFOREACH
0040 WHILE ITER'NEXT()
0050 PRINT ITER'DATA'PROPERTIES_("MACAddress")'VALUE$
0060 LET IPITER = ITER'DATA'PROPERTIES_("IPAddress")'VALUE'PVXFOREACH
0070 WHILE IPITER'NEXT()
0080 PRINT IPITER'DATA$
0090 WEND
0100 IPITER'PVXFREE()
0110 WEND
0120 ITER'PVXFREE()
0130 ESCAPE
0140 DELETE OBJECT WMI

*GLOBAL
The purpose of the *GLOBAL object is to provide an enumerator for the system wide
list of objects exposed using PvxMakeGlobal. With this enumerator, a developer can
quickly determine the available global objects, and can bind to any object within this
list. The following members belong to the *MASTER object:

NEXT() Method Call. This method reads the next available
collection or array item into the DATA property and
returns true on success. If no further items exist, false will
be returned. This method must be called (and return
success) before accessing the DATA property.

RESET() Method Call. Resets the "for each" enumerator and clears
the DATA property. This allows item enumeration to start
from the first item. Only required if a second (or more)
iteration is desired.

BINDTO(index/name$) Method Call. Returns a reference to the global object
specified by either name or index of item in the global list.

COUNT Read Only Property. Returns the count of objects in the
system wide list.

ITEM$(index) Method Call. Returns the name of the global object at the
specified index. Please note that ITEM$ should be treated
as a zero-based array.

REFRESH() Method Call. Refreshes the system wide list of global objects.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 277

*MASTER
The master object provides direct access to the object list maintained by the interop
layer, as well as any future global settings that may be introduced. With this access, a
developer can quickly determine the number of objects in use, which is essential
when tracking down code that may not be handling sub object references properly.
The following members belong to the *MASTER object:

*PROXY
The proxy object allows the developer to expose instantiated ProvideX objects
directly to the COM world. A good example of this would be to a hosted scripting
language. In order to use the proxy, a binding to a ProvideX object must first be
established. This is done using the ON EVENT FROM syntax; e.g.,

0010 oCol = NEW("*obj/Collection")
0020 DEF OBJECT colProxy, "*PROXY"
0030 ON EVENT FROM colProxy PROCESS oCol

The following members belong to the *PROXY object:

CALLCOUNT Read Only Property. Returns the number of command call
executions since the interop library was initialized.

COUNT Read Only Property. Returns the number of objects being
managed by the interop layer (includes the master object
in this count).

ITEM(index) Method Call. Returns the interop handle for the object at
the specified index (see PVXID). Please note that ITEM
should be treated as a zero-based array.

LISTPVXMETHODS Read / Write Property. Determines if the internal PVX
methods should be listed when the '* property of an object
is queried. Defaults to true (-1).

VERSION$ Read Only Property. Returns the file version number for
the interop library PVXOCX32.

Note: The *PROXY object is not intended to be used directly from ProvideX as it is
only a translation layer for the COM to ProvideX method calls. Because of this,
issuing a ‘* against the proxy will only return the PVX prefixed internal method
names. Once the binding has been done, the proxy wrapper may be passed to a
COM object using the standard * notation for objects.

ASOBJECT(ObjID) Method Call. Allows the COM client to wrap a (ProvideX)
object handle. If the ObjID represents a valid ProvideX
object handle, an internal proxy wrapper will be created
and the dispatch interface will be returned.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 278

*RECORD
COM user defined types (UDT) or records are handled using this object type. A
record object may be returned as a result of a method or property call, or can be
directly created using the PVXALLOCRECORD method. Each field in the record will
be handled as a read / write property, and will be displayed when the '* listing is
queried. The following is a predefined member in the record object:

*VARIANT
Being a wrapper around an OLE variant, this object can store any data type,
including other objects. It also provides a means for converting data in place, and
handling data types that are not directly supported by ProvideX. Its primary
purpose is for method calls that expect data to be passed by reference, but it is also
useful when a COM object will only handle data of a specific type.

INVOKE(name, flag [, parameters…])

Method Call. Executes the property or method name
specified by the name parameter. The flag value must be
one of the following: 1 (property get), 2 (property set), or 3
(method call). Any parameters that should be passed to
the ProvideX object will then follow.

This method is provided to handle overload situations
where it can be unclear which property or method should
be called, e.g.,

PROPERTY TEST
PROPERTY TEST$
FUNCTION TEST()
FUNCTION TEST$()

Would translate to the following Invoke calls.

.Invoke("TEST", 1)

.Invoke("TEST$", 1)

.Invoke("TEST", 3)

.Invoke("TEST$", 3)

EVALUATE(statement) Method Call. Passes the statement string parameter to the
ProvideX interpreter for evaluation.

EXECUTE(statement) Method Call. Passes the statement string parameter to the
ProvideX interpreter for execution.

PASSBYREF Read / Write / Default Property. Determines if the
IRecordInfo interface will be passed by reference.
Setting the property to zero indicates false, any other value
indicates true. The default setting for this property is true.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 279

The following members belong to the *VARIANT object:

ADD(data[$]) Method Call. Adds the value of the data parameter to the
currently held variant data. Logical use is for building strings
greater than 32K in length, but can be used to add numbers, etc.
Calling this method will perform an implicit conversion to the
data type of the passed parameter.

ADDB(data[$]) Method Call. Adds the string data parameter to the currently
held variant string data. No conversion to Unicode is performed.
Requires the passed data parameter to be a either a string or a
variant object that contains a string. Also requires the current
data to be a string type.

CLEAR() Method Call. Clears the contents of the variant. After the CLEAR
finishes, the data type for the variant will be set to E(mpty). If the
variant contained an object or array reference, the object will be
released.

EXPLICITBYREF Read / Write Property. Determines how the variant will be
passed if PASSBYREF is set to true. When this property is set to
false (zero), a pointer to the variant will be passed to the COM
method. When set to true (non zero), a pointer to the actual data
will be passed. The default setting for this property is false.

LEN Read Only Property. Returns the length of the data held by the
variant. Logical use is primarily for string data.

LENB Read Only Property. Returns the length of the data held by the
variant. This is identical to the LEN property except when the
variant contains string data. For strings, the actual byte count is
returned, which is not the same as the character count when
dealing with Unicode strings.

PASSBYREF Read / Write Property. Determines if the variant will be passed
by reference. Setting the property to zero indicates false, any
other value indicates true. The default setting for this property is
true. Also see EXPLICITBYREF.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 280

Examples:

The following example helps to illustrate the difference between the default string
handling vs. byte handling properties and methods:

0010 DEF OBJECT V, "*VARIANT"
0020 LET V'VAL$ = "Hello World"
0030 PRINT V'LEN, ",", V'LENB$
0040 PRINT V'VAL$
0050 PRINT V'VALB$
0060 ESCAPE
0070 DELETE OBJECT V

TYPE$ Read / Write Property. Returns the data type for the data being
held in the variant. When set, will attempt to convert the data to
the requested data type. An error will occur if the conversion
fails.Valid types:

A Array data type (not settable)
B Boolean data type
C Byte data type
D Date data type
E Empty data type
F Single data type
I 32 Bit Integer data type
L Decimal data type
M Currency data type
N 16 Bit Integer data type
O Object data type
R Double data type
S String data type
X Record data type
Z Null data type (value)

VAL[$] Read / Write Property. Used to get/set the data held by the
variant. It should be noted that setting the data may cause an
implicit conversion. For example, if the current data type is B,
setting the VAL property to 0 will cause a conversion to data type
I. When assigning an object to the VAL property, the following
notation must be used:

object'VAL.PUT(*otherobject)

VALB[$] Read / Write Property. Used to get/set the string data held by the
variant. The difference between this property and the VAL
property is that the data is assigned "as is". No conversion from
Unicode to ANSI is performed on the data.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 281

If an object's documentation indicates that a parameter for a method call is "by
reference", then *VARIANT must be used. The *VARIANT object is always passed "by
reference" to the object, thus allowing the developer to retrieve the new value after
method execution.

0010 DEF OBJECT V, "*VARIANT"
0020 DEF OBJECT X, "MSScriptControl.ScriptControl"
0030 V'VAL=10
0040 Z=X'RUN("MySub", *V)
0050 ! Pretend that the object X has set the data for V to "Hello World"
0060 ?V'VAL$! Will print "Hello World"

The data for V was set to 10 and then passed as a parameter to the object's method
call. Because it was passed "by reference", the method call can change the data to
anything or any type it wishes. If unsure of the data type returned in the *VARIANT
object, then check the 'TYPE$ property.

*VARARRAY
Instances of this object type are used to facilitate methods that either accept or return
COM arrays. What distinguishes this object from ProvideX arrays is the fact that
each element can accept data of any type. For example, element 1 may hold a string
value, element 2 an object, element 3 an integer, etc. It should also be noted that this
object is always passed by reference. The *VARARRAY wrapper is also able to return
a *FOREACH enumerator when the COM array contains a single dimension.

When an array is assigned to a *VARIANT, it is important to remember that the
*VARIANT will end up with a copy of the array, not the actual array itself. Any
changes, even releasing the array, will not affect the array held by the *VARIANT.

Following is a list of members in the variant array object:

ARRAYTYPE$ Read Only Property. Returns the array type.Valid types:

B Boolean data type
C Byte data type
D Date data type
F Single data type
L Decimal data type
I 32 Bit Integer data type
M Currency data type
N 16 Bit Integer data type
O Object data type
R Double data type
S String data type
V Variant data type.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 282

CLEAR(index[, index]) Method Call. Clears the data being held in the variant
array element. It is legal to call this method without
passing in the element index, in which case the index will
default to zero. After the clear completes, the element data
type is set to E(mpty).

COPY Read Only Property. Returns a variant array object that
contains an exact copy of the contents of the current
variant array.

CREATE(elements[, elements])
Method Call. Initializes the variant array to the dimension
count, and element count for each dimension. This method
must be passed at least one element count (to create a single
dimensioned array), and can accept a maximum of 20
element counts.

Examples:

10 ! Create 1 dim array with 10 elements
20 OBJECT'CREATE(10)
30 ! Create 2 dim array
40 OBJECT'CREATE(10, 100)
Either this method, or CREATEVECTOR, must first be called
before attempting to access data. Calling CREATE multiple
times is also allowed, but will clear any existing data.

CREATEBYTEARRAY(data[$])
Method Call. Requires the passed data parameter to be a
either a string or a variant object that contains a string.
Initializes the array as a single dimension array of byte
(ArrayType = "C"), with the element count of the array equal
to the length of the data string. For string data, a conversion
to Unicode is performed, resulting in an element count that
is 2x the length of the string. If byte handling is desired then,
a *VARIANT object should be used.

Examples:

10 DEF OBJECT V, "*VARIANT"
20 DEF OBJECT A, "*VARARRAY"
30 V'VALB$="Hello world"
40 A'CREATEBYTEARRAY(*V)

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 283

CREATEEX(type$, elements[, elements])
Method Call. Initializes an array of the type specified by
type$, where type$ is one of the valid characters from
ARRAYTYPE$. The number of dimensions is determined by
the count of passed elements. Each element parameter
determines the element count for the dimension. This
method must be passed at least one element count (to create
a single dimensioned array), and can accept a maximum of
19 element counts. Also see ARRAYTYPE$.

CREATEVECTOR(data[, data])
Method Call. Initializes the array as a single dimension
variant array with the element count equal to the number of
parameters passed in. Each element in the array will be
assigned the contents of the corresponding data parameter.

Example:

OBJECT'CREATEVECTOR("John", "Smith", 31, 150.3)
Creates a single dimension array with an LBOUND of zero,
a UBOUND of 3, and element data types of:
[0] = "S", [1] = "S", [2] = "I", [3] = "R"

Calling CREATEVECTOR multiple times is allowed, but will
clear any existing data.

DIMENSIONS Read Only Property. Returns the number of dimensions in
the variant array.

GETDATA[$](index[, index])
Method Call. Returns the data being held in the variant
array element. It is legal to call this method without passing
in the element index, in which case the index will default to
zero.

GETDATAEX(index[, index])
Method Call. Returns the data being held in the variant
array element as a variant object. It is legal to call this
method without passing in the element index, in which case
the index will default to zero.

LBOUND(dimension) Method Call. Returns the lower boundary for the
dimension in the array. Please note that this will always be
zero for a valid dimension. When passing dimension, the
value should be an integer between 1 and the number of
valid dimensions; otherwise, an error occurs.

OLEARRAY Read Only Property. Returns a variant array copy of the
current array. If the current ARRAYTYPE$ property is "V",
then no conversion is required.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 284

Example:

The following is an example of initializing an array using all the valid
array types:

0010 ! Set array types to create
0020 DEF OBJECT A, "*VARARRAY"
0030 LET TYPES$ = "VBCMDRNIOFS"
0040 FOR I = 1 TO LEN(TYPES$)
0050 A'CREATEEX(TYPES$(I,1),10)
0060 PRINT "ARRAY TYPE:", A'ARRAYTYPE$
0070 PRINT "ARRAY DIMENSIONS:", A'DIMENSIONS
0080 PRINT "ARRAY LBOUND:", A'LBOUND(1)
0090 PRINT "ARRAY UBOUND:", A'UBOUND(1)
0100 FOR X = A'LBOUND(1) TO A'UBOUND(1)
0110 PRINT A'GETDATA$(X)
0120 NEXT X
0130 ESCAPE
0140 NEXT I

PASSBYREF Read/Write Property. Determines if the array will be
passed by reference. Setting the property to zero indicates
false, any other value indicates true. The default setting for
this property is true.

SETDATA(index[, index], data[$])
Method Call. Assigns the contents of data to the variant
array element. It is legal to call this method without passing
in the element index, in which case the index will default to
zero. For variant arrays, the data parameter can be any valid
data type, including variant and variant array objects. For
all other arrays, the data parameter must be convertible to
the array type.

TYPE$(index[, index]) Method Call. Returns the data type for the data being held
in the variant array element. It is legal to call this method
without passing in the element index, in which case the
index will default to zero. For example, the following is
identical for a two dimension array:

T$=OBJECT'TYPE$()
T$=OBJECT'TYPE$(0, 0)

Unlike the variant object though, the TYPE property is read
only. If conversion of a data type is required, then the use
of a variant object is mandatory. See *VARIANT.

UBOUND(dimension) Method Call. Returns the upper boundary for the
dimension in the array. This will be one number less than
the total count of elements in the dimension; i.e.,
 0 ... Element_Count-1.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 285

COM Error Handling

Lack of proper documentation, misbehaved COM objects, and incorrect data types
are just a few of the numerous reasons that errors will occur. When a COM error
does occur, it normally appears in the form of an Error #88: Invalid/unknown
property name. This should only be taken as an indicator that a COM method
(property) call failed.

In order to further identify the problem, the following steps should be taken:

1. Break multi tick (') statement lines into single tick statements. Multi tick
statement lines only specify one object variable. The other objects created to
resolve the expression are temporary. If an error is reported on one of the
temporary objects, it cannot be evaluated after the statement executes, thus the
context of the error is lost.

2. Check the result of MSG(-1). When a COM error occurs, the interop layer will set
the textual error message for MSG(-1).

3. Create an instance of *ERROR and evaluate the information exposed through its
properties. The *ERROR object is a wrapper around the COM interop's error
information table, which is used to track the last error. This allows a *ERROR
object to be created after the fact.

4. Check the PVXERROR[$] for the object. The error code returned by PVXERROR is
also known as the HRESULT by developers in other languages. When working
with third party developers, this information may be required. The string
representation of this error is identical to what is displayed by MSG(-1).

5. Verify (with documentation or type library viewer) that the information you are
passing is correct. One of the most common errors is passing incorrect or invalid
data to COM methods. The second most common error is passing too many, or too
few, parameters.

In most cases, the steps above will be enough to resolve the COM errors that occur.
Should this not be the case, then proper documentation will be critical in resolving
the issue. If documentation is not available for the COM object, then the use of
PVXDESCRIBE can be used as a last resort. This extended method takes one string
parameter, which is the name of the object's property or method to generate
information for.

If the object does not expose type information, then the interop layer will not be able
to provide any detailed information.

Note: An object does not require type library information to be programmable.
However, without proper documentation, it will be impossible to determine what
member names are available, and how they should be called.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 286

Advanced Usage

This section describes some of the more advanced aspects of COM usage within the
ProvideX environment.

String Handling in COM
When string data is passed from ProvideX to the COM interop layer, a translation is
performed that converts the data to a double byte character string. For example, the
string "HELLO WORLD" becomes the following in memory:

When string data is passed back to ProvideX, the double byte character string is
converted back to a single byte (ANSI) string. While this is the expected behavior in
most situations, it can cause problems when the string data type is used to transport
binary data between a client and object. For example, if an object used the string data
type to return data that represented a picture image, attempting to convert the data
to a single byte string would be incorrect. The following describes the mechanisms
that should be used for correctly dealing with this situation.

• When passing binary data to an object (using the string data type), a *VARIANT
object must be used. The variant exposes the VALB property which allows data to
be set in binary mode, bypassing the normal double byte conversion. The LENB
property can be used to determine the byte length, and the ADDB method can used
to build a stream of byte data.

• When receiving a byte string from a property or method call, the respective
Invocation Hints .GetB$ and .CallB$ must be used. The invocation hints
inform the COM interop layer that the return string data should not be converted
from a double byte to single byte string.

The following pseudo code demonstrates the mechanics for both passing and
receiving binary data from a fictitious object.

0010 DEF OBJECT X, "SOME OBJECT"
0020 DEF OBJECT V, "*VARIANT"
0030 LET V'VALB$ = $000102030405060708AB1215$
0040 X'PASSTHEDATA(*V)
0050 LET S$ = X'GETTHEDATA.CALLB$()
0060 DELETE OBJECT V
0070 DELETE OBJECT X

H \0 E \0 L \0 L \0 O \0 \0 W \0 O \0 R \0 L \0 D \0

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 287

Passing Optional Parameters
Many objects have methods where the parameters are defined as optional. This is an
indication to the developer that the parameter can be excluded. But how is this
accomplished in ProvideX? Below is an example of an ADO Recordset Open method
in VB as translated to ProvideX:

In ProvideX, the optional parameters are passed using * asterisk. The one exception
is that ProvideX will not allow * to be passed as the last parameter. If these
parameters are not required for the method call, then they must be omitted, and the
method call should be terminated with a closing parenthesis at the last actual
parameter:

Sub-Object Handling
In ProvideX, a sub-object is defined as any object that is the return value of another
object's property or method call. Since a sub-object is owned by the base object, it
will be destroyed when the base object is destroyed.

10 DEF OBJECT WORD, "Word.Application;Finalize=Quit"
20 DOCS = WORD'DOCUMENTS
30 DELETE OBJECT WORD

After line 30 executes, the DOCS object will no longer be valid, as the owning object
has been destroyed. To determine if an object is owned by another (parent) object,
the PVXPARENT property can be examined (see Extended Properties and
Methods, p.269). For top level objects, the return value will be zero, otherwise the
parent object handle will be returned. It is important to be aware of this, as the
lifetime of an object is directly controlled by the lifetime of its parent.

Reserved Word Conflicts
Occasionally there are cases where an object's property or method is identical to a
ProvideX reserved word. When this happens, ProvideX will generate a syntax error
on any attempt to use the object's property or method name. For example, if you
queried a calendar control for a property called Day, the following would occur.

10 DEF OBJECT CAL, "MSCAL.Calendar.7"
20 PRINT CAL'DAY
Error #20: Syntax error ...Day

Visual Basic: RS.OPEN "GL1_ACCOUNTS", CONN, , , 2

ProvideX: RS'OPEN("GL1_Accounts", *CONN, *, *, 2)

Incorrect: RS'OPEN("GL1_Accounts", *CONN, *, *, *)

Correct: RS'OPEN("GL1_Accounts", *CONN)

Note: Refer to the method’s documentation or use a type library viewer to determine if a
method uses optional parameters.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 288

An Error #20 is raised after line 20 executes. To handle these situations, the COM
interop layer provides a mechanism called "aliasing" (see PVXALIAS under
Extended Properties and Methods, p.269). This allows a developer to call a
property or method by creating user-defined names. For example, the following
could be done to correct the previous example.

0010 DEF OBJECT CAL, "MSCAL.Calendar.7"
0020 CAL'PVXALIAS("DAY", "CALENDARDAY")
0030 PRINT CAL'CALENDARDAY

Comparisons with Visual Basic

Many third party vendors tailor their code examples for Visual Basic. While
translating these examples to ProvideX is relatively straight forward, there are some
nuances in the Visual Basic language that can cause problems. This section lists some
of the more common translation errors, and describes how they should be handled.

Default Member Access
What is a default member? A default member is a property or method of an object
that is invoked when a client does not specify a property or method name. Take the
following Visual Basic example:

Dim rs As ADODB.Recordset
rs("CompanyName") = "SomeCompany"
rs!CompanyName = "SomeCompany"

The code above is actually a shortcut for:

Dim rs As ADODB.Recordset
rs.Fields("CompanyName").Value = "SomeCompany"
rs.Fields!CompanyName.Value = "SomeCompany"

The problem with this coding style is that the code is no longer self documenting. A
programmer must have knowledge of the ADODB.Recordset object in order to
determine what the code is actually doing.

Determining when a shortcut has been used is a little more difficult. If the code returns
an object, and the assignment is performed using a string, number, or object (with out
a Set statement), then a shortcut is most likely in use. To access the default member in
ProvideX, an _ underscore must be used. See the corresponding ProvideX code:

10 DEF OBJECT RS, "ADODB.Recordset"
20 RS'_("CompanyName")'Value$ = "SomeCompany"
30 RS'_("CompanyName")'_$ = "SomeCompany"

Note: While this coding style is supported in ProvideX, its general use is discouraged.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 289

For Each
The For Each statement is used in Visual Basic when an object exposes a collection
interface (using IEnumVariant); e.g., Excel.Application exposes a collection
called WorkBooks:

Dim ExcelApp As Object
Set ExcelApp = CreateObject("Excel.Application")
For Each WorkBook in ExcelApp.WorkBooks
 '... do something with WorkBook
Next

ProvideX also has the capability to utilize the collection enumerator through the use
of the *FOREACH object. The following is the ProvideX equivalent for the Visual
Basic code above:

0010 DEF OBJECT EXCELAPP,"Excel.Application;Finalize=Quit"
0020 LET WORKBOOK=EXCELAPP'WORKBOOKS'PVXFOREACH
0030 WHILE WORKBOOK'NEXT()
0040 ! do something with WORKBOOK'DATA
0050 WEND

Named Arguments
Some objects allow method arguments to be passed in using name positioning rather
than index positioning. For example, the Open method of the Microsoft Excel
Workbooks object (for opening a workbook) takes 13 arguments. All arguments are
optional in the Open method, and could be written in Visual Basic as:

Workbooks.Open "book2.xls", , , , , , , , , , , , True

Given that Microsoft Excel will accept named arguments, the preceding code could
also have been written as:

Workbooks.Open FileName:="book2.xls", AddToMru:=True

The use of a named argument is very easy to spot when converting Visual Basic
code, given the := syntax. The difficult part is converting the above sample to
ProvideX, which must pass arguments by index. This is where documentation, or a
good type library viewer, is necessary.

Once the index location of FileName and AddToMru are found, coding the
statement in ProvideX is simple:

Workbooks'Open("book2.xls", *, *, *, *, *, *, *, *, *, *, *, True)

This is very close (syntactically) to the original Visual Basic example, except for the
use of asterisks as optional arguments.

Note: The benefit of using a "for each" enumerator is that it does not matter if the
collection is zero or one based; the enumeration code remains the same.

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 290

Calling Conventions
This section discusses how to determine when you should, or should not, expect a
result from a method call. If a Visual Basic statement passes parameters, but does not
contain open and close parentheses, then the statement is performing a call to a
procedure, and no result is returned. Using the previous Excel example:

Workbooks.Open "book2.xls", , , , , , , , , , , , True
-
10 Z = Workbooks'Open("book2.xls", *, *, *, *, *, *, *, *, *, *, *, True)

In this example, no data is returned from the Visual Basic call; but, in ProvideX, a
zero would be returned to Z. The zero in ProvideX, for this situation, represents a
null return value. Using another example:

Dim I as Integer
I = RecordSet.Fields(0)
-
10 I = RecordSet'Fields(0)'Value

The data returned for the field value might be zero, but it does have meaning in this
context (it is the data value for the Fields). Finally, if the statement you are
converting starts with a Set, then your code should be written to expect an object
return value.

Dim Fld as Object
Set Fld = RecordSet.Fields(0)
-
10 Fld = RecordSet'Fields(0)

20 DEF OBJECT Fld

 Examples

This section contains code samples that indicate how to perform a number of actions
using the ProvideX COM Interface. These are not complete programs and are
intended only to demonstrate some practical non-event COM usage in ProvideX
applications. For event-driven program examples of COM, see Event-Driven COM,
p.294.

Example 1:
This example demonstrates how to embed a shell browser window within ProvideX,
and to display either a web page or a folder view as the contents.

0010 DEF OBJECT IE, @(2, 2, 70, 16) = "Shell.Explorer"
0020 IE'Navigate2("http://www.pvx.com")
0030 ESCAPE
0040 IE'Navigate2("file://c:\")
0050 ESCAPE
0060 DELETE OBJECT IE

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 291

Example 2:
The folling invokes Adobe PDF printing hidden from the user.

0010 DEF OBJECT PDF,"PDF.PdfCtrl.6"
0020 PDF'LoadFile("C:\tmp\test.pdf")
0030 PDF'Print()
0040 DROP OBJECT PDF

Example 3:
This example demonstrates how to use the tool window dialog to select a control.

0010 PRINT 'CS'
0020 DEF OBJECT AXCTL, @(40,1,30,10)="*", ERR=0100
0030 PROG$ = AXCTL'PVXNAME$
0040 ESCAPE
0050 END
0100 PRINT MSG(-1)

Example 4:
This example demonstrates how to embed a Word document from a file reference.
Requires Microsoft Word to be installed.

0010 GET_FILE_BOX READ WORDDOC$, LWD, "Word Document", "Word
Document|*.doc,"

0020 IF WORDDOC$="" THEN END
0030 DEF OBJECT WD, @(0,0,80,20)="[File]"+WORDDOC$
0040 INPUT *
0050 DELETE OBJECT WD
0060 END

Example 5
This example demonstrates how to open an Access database and to read the table
schema. Requires Microsoft Access to be installed.

0010 GET_FILE_BOX READ MDB$, LWD, "Access Database"," Access Database
|*.mdb,"

0020 IF MDB$="" THEN END
0030 DEF OBJECT CONN, "ADODB.Connection"
0040 LET CONNSTR$ = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source="+MDB$
0050 CONN'OPEN(CONNSTR$)
0060 DEF OBJECT VARDATA,"*VARARRAY"
0070 VARDATA'CREATE(4)
0080 VARDATA'SETDATA(3,"Table")
0090 LET R = CONN'OPENSCHEMA(20,*VARDATA)
0100 LET N$ = ""; FOR I=0 TO R'FIELDS'COUNT-1; LET

N$=N$+R'FIELDS(I)'NAME$+" | "; NEXT I; PRINT N$
0110 LET RA = R'GETROWS(20)
0120 FOR I=0 TO RA'UBOUND(2)
0130 LET TXT$ = ""
0140 FOR II=0 TO RA'UBOUND(1)
0150 LET TXT$ = TXT$+RA'GETDATA$(II,I)+" | "
0160 NEXT II

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 292

0170 PRINT TXT$
0180 NEXT I

Example 6:
This example demonstrates how to use WMI to display the MAC and IP address for
the local computer. It also demonstrates the "for each" enumerator usage using a
collection and an array.

0010 DEF OBJECT WMI,"[GetObject]winmgmts:\\.\root\cimv2"
0020 LET COLITEMS = WMI'EXECQUERY("Select * from

WIN32_NetworkAdapterConfiguration where IPEnabled = True")
0030 LET ITEMSFOREACH=COLITEMS'PVXFOREACH
0040 WHILE ITEMSFOREACH'NEXT()
0050 PRINT ITEMSFOREACH'DATA'PROPERTIES_("MACAddress")'VALUE$
0060 LET IPARRAY=ITEMSFOREACH'DATA'PROPERTIES_("IPAddress")'VALUE
0100 LET IPFOREACH=IPARRAY'PVXFOREACH
0110 WHILE IPFOREACH'NEXT()
0120 PRINT IPFOREACH'DATA$
0130 WEND
0140 IPARRAY'PVXFREE()
0150 WEND
0160 ITEMSFOREACH'PVXFREE()
0170 ESCAPE
0180 DELETE OBJECT WMI

Example 7:
This example demonstrates how to use the Scripting File System object to list the
available drive letters on the local computer.

0010 DEF OBJECT FSO, "Scripting.FileSystemObject"
0020 LET DRIVE_ITER = FSO'DRIVES'PVXFOREACH
0030 WHILE DRIVE_ITER'NEXT()
0040 LET DRIVE = DRIVE_ITER'DATA
0050 PRINT DRIVE'DRIVELETTER$
0060 WEND
0070 ESCAPE
0080 DELETE OBJECT FSO

Example 8:
This example demonstrates how to create a picture interface, and then load the
picture into a control that displays picture data.

0020 INPUT "Enter Picture Value:",PIC$
0025 IF LEN(PIC$)=0 THEN GOTO 0100
0026 IF (X>0) THEN X'PVXFREE()
0028 DEF OBJECT X,@(50,1,30,15)="Forms.Image.1"
0030 DEF OBJECT Y,"[picture]"+PIC$
0040 X'PICTURE.PUT(*Y)
0050 GOTO 0020

9. External Components ProvideX COM Support

ProvideX User’s Guide V8.30 Back 293

Example 9:
The following code sample is used for controlling a Shockwave Flash animation.

0010 print 'dialogue'(0,0,60,20,"Flash",'CS')
0020 Places=10
0030 !
0040 def object Flash,@(0,0,45,15.5)="Shockwaveflash.shockwaveflash.1"
0050 R$=lwd+dlm+"earth.swf"
0060 Flash'LOADMOVIE(0,R$)
0070 Flash'SETVARIABLE("n","Earth")
0080 !
0090 drop_box Places,@(47,5,10,10)
0100 print 'text'(@x(47),@y(4.25),"Visit:"),
0110 drop_box load Places,"<Just Spin>,North and South America,Africa,

Hawaii,Asia,Austriala,Russia,Europe,"
0120 drop_box write Places,"<Just Spin>"
0130 !
0140 obtain X
0150 if ctl=4 then print 'pop'; end
0160 if ctl=Places then gosub MOVE
0170 goto 0140
0180 !
0190 MOVE:
0200 if Places'CURRENTITEM=1 then Flash'PLAY();

Flash'SETVARIABLE("n","Earth"); goto 0140
0210 if Places'CURRENTITEM=2 then EARTHP=39; goto SETP
0220 if Places'CURRENTITEM=3 then EARTHP=62; goto SETP
0230 if Places'CURRENTITEM=4 then EARTHP=44; goto SETP
0240 if Places'CURRENTITEM=5 then EARTHP=52; goto SETP
0250 if Places'CURRENTITEM=6 then EARTHP=58; goto SETP
0260 if Places'CURRENTITEM=7 then EARTHP=61; goto SETP
0270 !
0280 SETP:
0290 Flash'STOP()
0300 C=Flash'CURRENTFRAME()
0310 if C=EARTHP then goto 0140
0320 if C>EARTHP then INC=-1 else INC=1
0330 R$=Places'VALUE$
0340 Flash'SETVARIABLE("n","Moving To "+R$)
0350 !
0360 for I=C to EARTHP step INC
0370 Flash'GOTOFRAME(I)
0380 wait .05
0390 next I
0400 Flash'SETVARIABLE("n",R$)
0410 goto 0140

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 294

Event-Driven COM Event s

In COM automation, when a control wants to notify its client applications that an
action has occured, it sends out a message called an event. The process of sending
these types of messages is referred to as event firing. As with any event-driven
program in ProvideX, the client application that is interacting with a control must be
listening for its events. However, in the COM case, it is imperative for the client
application to advise the COM object that it is ready and expecting to receive events.
For more on handling COM objects, see ProvideX COM Support, p.261.

Response Required
External events must be responded to immediately. This is a standard requirement
for COM. While access to properties and methods is typically controlled from the
client application’s side, the timing for when events can fire is determined by the
COM object itself. An event can happen whenever the application is reading or
updating files, processing data, printing reports, or waiting for user input. An event
can even fire while the application is in the process of servicing another event. The
client application has to be ready to recieve an event at any time.

Working With Events
There are a couple of ways to access, receive and process COM control events in a
ProvideX application:

• Linking to an OOP Object – Events from a COM object may be linked to an OOP
object in ProvideX using the syntax ON EVENT FROM .. PROCESS. An example of
this funtionality, is provided in the section Calendar Object, COM Event
Example, p.297.

• Accessing a Specific Event via an OOP Object – Individual events can be
activated via an associated ProvideX OOP object using the syntax FUNCTION .. FOR
EVENT. An example of this funtionality, is provided in the section Calendar Object,
COM Event Example, p.297.

• Generating a CTL Event for a COM Event – A CTL value can be placed into the
input queue when the COM event occurs using ON EVENT .. FROM .. PREINPUT. An
example of this funtionality, is provided in the section Automated Timer, COM Event
Example, p.300.

Various descriptions and examples of ProvideX COM event processing are provided
in the sections that follow.

Linking to an OOP Object, p.295
Accessing a Specific Event via an OOP Object, p.296
Handling Events, p.298
Event Templates, p.299
Errors in Events, p.300
Generating a CTL Event for a COM Event, p.300

Topics

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 295

Linking to an OOP Object

Linkage to a COM object can be managed/controlled through the use of a ProvideX
object using Data Integration functionality.

ON EVENT

ON EVENT FROM com_id PROCESS oop_id

Where:

ON EVENT FROMSupport for events from a COM object are limited to a single ProvideX OOP object,
whereas, a single ProvideX OOP object is capable of supporting events from
multiple COM objects. In other words, the relationship from a COM object to an
OOP object is "one-to-one", while the relationship from OOP object to COM object(s)
can be "one-to-many".

If ProvideX receives an event while processing another event, it will suspend the
first event, process the second entirely, then resume the first event before returning
to the main task. With this in mind, it is possible for a ProvideX task to become
overloaded with event requests; therefore, a limit of 64 outstanding event requests
has been imposed. ProvideX ignores subsequent event requests when there are 64
active requests being processed. Regular processing continues once the number of
outstanding requests drops below 64.

Generally speaking, files can be shared between currently running tasks and event
handlers. However, it is possible for an event to interrupt a task when it is part way
through the execution of a file I/O directive or function. Under these circumstances, the
file will not be available to the code associated with the event and the (new message)
Error #89: File access denied -- I/O operation pending will be reported.

Usage Notes
• An invalid com_id generates an Error #65: Window element does not
exist or already exists.

• An invalid oop_id generates an Error #95: Bad Object Identifier.

• Unexpected errors, such as when a COM object does not support events, will
generate an Error #88: Invalid/unknown property name and, if
available, place a description of what caused the error in the PvxError$ property
for the COM object, as well as in MSG(-1).

• An oop_id of 0 (zero) deactivates event processing for the current COM object.

• Dropping a ProvideX OOP object deactivates event processing for all COM objects
associated with the OOP object.

• The numeric OOP object identifier is stored in a read-only property called
PvxEvents.

com_id Numeric CTL value of a Windows COM object.

oop_id Numeric identifier of an OOP object.

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 296

• A comma-separated list of the events that are supported by the COM object is
available by querying the PvxEvents$ property. Supported events are prefixed with
a plus sign (+) while unmanaged events are prefixed with a leading minus sign (-).

• While the PvxEvents and PvxEvents$ properties will appear in the property list
for a COM object, they will not contain an available list of events until an ON
EVENT directive has been executed.

• Issuing a subsequent ON EVENT directive for a COM control will discontinue
event processing for the first ProvideX OOP object, then activate it for the new
OOP object (provided the new oop_id contains a non-zero value).

Accessing a Specific Event via an OOP Object

In order to receive events, a ProvideX object must first be designed with a method
written for each event to be handled. The following syntax sets a method to be
processed for a particular incoming event:

FUNCTION

FUNCTION method(args) logic FOR EVENT {event$|SAME}

Where:

For example, when writing an event class for a COM object that exposes the event

ONCLICK(X as Integer, Y as Integer, Button as Integer, Shift as Integer)

.. the following code would be required:

10 DEF CLASS "FOO"
20 FUNCTION ONCLICK(X, Y, B, S) ONCLICK FOR EVENT "ONCLICK"
30 END DEF
40 STOP
50 ONCLICK:
60 ENTER X, Y, B, S
70 PRINT "OnClick was fired"
80 RETURN

The method and label name are not required to match the name of the event. It is the
string after the FOR EVENT portion of the statement that determines the event name
that will be handled. The event name is not case sensitive, and argument names are

method Name of the method/function that the object can perform.

(args) Optional list of arguments to be used in the logic when the method is
actually invoked. Parentheses are required with/without arguments.

logic Procedure associated with method. This should return a value; if not,
the system forces 0 or " ".

event$ Name of the corresponding COM event.

SAME Keyword to use if the method name matches event$ name.

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 297

not required to match the COM object's event declaration. When the OOP method
name matches the COM event name, then SAME can be used to describe the name of
the event.

Once the class is complete, an instance of the class must be instantiated in order to bind
the COM object to the event handler. An example of the binding is listed on line 30:

10 DEF OBJECT FOO, "{Your Com Object Name}"
20 FOOEVENTS = NEW("FOO")
30 ON EVENT FROM FOO PROCESS FOOEVENTS

Once bound, the ProvideX event class function will be called when the
corresponding event occurs.

Calendar Object, COM Event Example
The following event-driven program uses Microsoft’s built-in Calendar object. It
encapsulates the control of the calendar object completely inside a ProvideX OOP
object and then processes the events from the calendar.

0010 def class "Calendar" create OnCreate required delete OnDelete required
0020 local Calendar,LastEvent$
0030 property GetDay
0040 property GetMonth
0050 property GetYear
0060 property GetDate$
0070 function Click()";Click" for event same
0080 function DoubleClick()";DoubleClick" for event "DblClick"
0090 function Change()";Change" for event "SelChange"
0100 function DateDoubleClick()";DateDoubleClick" for event "DateDblClick"
0110 end def
0120 !
0130 OnCreate:
0140 enter X,Y,W,H
0150 def object Calendar,@(X,Y,W,H),"MSComCtl2.MonthView.2"
0160 on event from Calendar process _obj
0170 return
0180 !
0190 OnDelete:
0200 if Calendar
 then drop object Calendar;
 Calendar=0
0210 return
0220 !
0230 Click:
0240 LastEvent$="Click"
0250 goto DoneEvent
0260 !
0270 DoubleClick:
0280 LastEvent$="DoubleClick"

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 298

0290 goto DoneEvent
0300 !
0310 Change:
0320 LastEvent$="Change"
0330 goto DoneEvent
0340 !
0350 DateDoubleClick:
0360 LastEvent$="DateDoubleClick"
0370 goto DoneEvent
0380 !
0390 DoneEvent:
0400 GetDay=Calendar'DayOfWeek
0410 GetMonth=Calendar'Month
0420 GetYear=Calendar'Year
0430 GetDate$=Calendar'Value$
0440 if LastEvent$="DoubleClick" or LastEvent$="DateDoubleClick"
 then msgbox "You selected a date of: "+GetDate$
0450 return

Handling Events

It is highly recommended that event functions be kept relatively short and simple.
One reason for this is that normal code execution will be suspended when an event
is handled and will not resume until the event function is finished. It is also possible
to introduce code (or use commands such as MSGBOX) to create a re-entrancy issue
in the event function.

Re-entrancy is allowed; however, a limit has been imposed to prevent runaway
objects. If the event call stack reaches a depth of 64, all further events will be
discarded while waiting for the current events to finish. The following related TCB
values have been added to ProvideX to expose this information:

It is important that the function declaration in the ProvideX class matches that of the
COM event. Otherwise, your function may not get called, or may cause an error
when the event is fired. If a situation occurs where an event argument is defined as
variant (and may receive either string or numeric data) then a second overloaded
event function should be defined, e.g.,

OnData(data)

TCB(120) Returns the interop handle (see PVXID) for the COM object that fired
this event. Similar to the _obj when in a class function.

TCB(121) Returns the number of events that have been dispatched to ProvideX.
TCB(122) Returns the current depth of the event call stack.
TCB(123) Returns the number of events that have been discarded by ProvideX

due to excessive outstanding event calls.

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 299

The following would be required in your ProvideX class to properly handle both cases:

010 DEF CLASS "FOO"
020 FUNCTION ON_DATA(N) ON_NDATA FOR EVENT "ONDATA"
030 FUNCTION ON_DATA(S$) ON_SDATA FOR EVENT "ONDATA"
040 END DEF
050 STOP
060 ON_NDATA:
070 ENTER N
080 PRINT "Numeric data ", N
090 RETURN
100 ON_SDATA:
110 ENTER S$
120 PRINT "String data ", S$
130 RETURN

Another aspect of event handling deals with the scope of passed arguments. All
arguments passed into an event are local in scope, and should not be considered to
exist when the event is finished. It is common for many event routines to pass COM
objects in as parameters. These can be programmed against during the event, but
should not be persisted (assigned for later use) when the event is finished.

Event Templates
The Type Library Browser (PVXtlb.exe) was developed to provide extended type
information for Windows COM objects, and to help simplify the process of creating event
class objects. This utility is freely downloadable from www.pvx.com. For further
information on this utility refer to the ProvideX Type Library Browser documentation.
The following steps briefly outline the event template generation feature of the TLB:

1. Use the Type Library Browser to open the desired type library. The COM object's
PVXTYPELIB$ and PVXISA$ properties are useful for determining this information.

2. Locate the CoClass (COM Class) that supports the COM object, and locate the
Default Event Interface in the Entity Documentation section.

3. Browse to the event interface by clicking the link in the Entity Documentation, or
by double clicking the interface in the Members list.

4. In the Entity Documentation section of the utility, a link is available to generate an
event template. Click this link to open the Save As dialog.

5. Save the template to the desired file name. The DEF CLASS statement in the
template is automatically updated to reflect the filename assigned.

The event template (in text form) can then be edited in any text processor. All event
functions, type casting, and def object statements will have been automatically created.
The only thing that is required is to fill in the event function bodies with the necessary
ProvideX code. Each function will have a commented section identified with the tag "<
Insert code here >", which is where the custom code should be placed.

9. External Components Event-Driven COM

ProvideX User’s Guide V8.30 Back 300

Errors in Events

In a typical ProvideX program that uses class objects, an error raised by an object
will be cascaded back to the calling program. Events, on the other hand, are called by
COM objects and not ProvideX code. If an error occurs during the event handling,
the COM interop layer will notify the COM object that the event failed. However,
nothing is reported on the ProvideX side; i.e., there is no program to report to. For
this reason, all error handling should be performed within the class object.

Also, it is not wise to release the calling COM object, or its event handler object,
during the execution of the event. Releasing the COM object during the event can
lead to unpredictable results. Objects that were passed in as event parameters may
be safely released.

Generating a CTL Event for a COM Event

ProvideX can also process external events by generating a ProvideX CTL whenever
an identified COM event occurs. The following ON EVENT syntax places a CTL
value into the input queue:

ON EVENT evtname$ FROM com_id PREINPUT ctl_id

Where:

The PREINPUT format simplifies the event interface by eliminating the need to create
an OOP object to manage events. This also works across WindX. The event process
does not have access to any event parameters as it will not be running in-line when
the event occurs. If event parameters are required, then refer to the section Linking
to an OOP Object, p.295.

Automated Timer, COM Event Example
The following event-driven program sets an automated timer by generating a
ProvideX CTL to process the associated COM event.

0010 def object Timer,"*system"
0020 on event "Timeout" from Timer preinput 500
0030 Timer'SetTimer(5)
0040 input a$,;
 if ctl=500
 then print "Got a Timer Event";
 goto *same
0050 Timer'SetTimer(0)
0060 drop object Timer

evtname$ Event name, maximum 255 characters.

com_id Numeric CTL value of a Windows COM object.

ctl_id Numeric CTL signal to generate (preinput) when a given event occurs.

9. External Components JavX COM Support

ProvideX User’s Guide V8.30 Back 301

JavX COM Support
A version of ProvideX COM Support is also available in JavX to enable access to
applications in the Java Runtime Environment (JRE). If a ProvideX application (running
under JavX) needs to interact with third party Java classes, then the JavX version of this
interface can be implemented for this purpose.

Accessing Java classes in JavX is very similar to accessing COM objects under WindX.
Java events are handled using ProvideX OOP objects. As with ProvideX and COM, the
DEF OBJECT directive can be used to interface directly with the Java run-time while in a
JavX session. For example, to create an instance of a Java AWT Button class, execute the
following:

DEF OBJECT BTN,@(5,5,5,5),"[WDX]java.awt.Button"

This functionality allows for the use of any Java class as well as Java Add-On classes. It
can also be used to create entire GUI screens in Java code that can be used in devices
such as PDAs. For more details on the handling of Java classes (controls/objects) by
ProvideX applications running under JavX, refer to the ProvideX Client-Server
Reference. Implementation of the COM interface in ProvideX is documented in the
sections ProvideX COM Support, p.261 and Event-Driven COM, p.294.

JavX COM support is outlined in the sections below.

Array Support

JavX supports the ProvideX extended object *VARIANT, but does not currently
support the extended objects *VARARRAY, *MASTER, *ERROR. However,
*VARARRAY may be supported in a future release of JavX. Currently, JavX supports
arrays through a JavX-specific extended object *ARRAY. Refer to the ProvideX
Client-Server Reference for documentation on *ARRAY.

"No Argument" Constructor

In Java, a class's constructor may may be private (typically when implementing a
Singleton design pattern), or public (but requiring arguments). To emulate the fact that
Window’s COM objects always have a public no argument constructor, the JavX version
of the COM interface includes the ability to load a class and then instantiate it. This
means that a handle to a class can be retrieved, and then a static method in the class that
returns an instance of the class can be called. Refer to the ProvideX Client-Server
Reference for more details on this functionality.

Event Support

The handling of COM events in JavX is also similar to that of ProvideX (documented in
the section Event-Driven COM, p.294). However, there are a few minor differences;
e.g., Java event listeners provide notification when an event has occurred on an object.

9. External Components JavX COM Support

ProvideX User’s Guide V8.30 Back 302

The following example creates a button and ActionListener (an object that responds to
action events):

10 DEF OBJECT JBUTTON,@(24.5,5,10,10)="[wdx]java.awt.Button"
20 EXECUTE "[wdx]on event java.awt.event.ActionListener from

"+STR(JBUTTON)+" preinput 100"
30 OBTAIN A$
40 PRINT A$

This example adds ActionListener to the button and when an action event occurs, a
CTL value of 100 is sent to the ProvideX host program. The following example adds
mouse event support only:

10 DEF OBJECT JBUTTON,@(24.5,5,10,10)="[wdx]java.awt.Button"
20 EXECUTE "[wdx]on event java.awt.event.MouseListener from

"+STR(JBUTTON)+" preinput 10"
30 OBTAIN A$
40 PRINT A$

In this example, the CTL value 10 will be returned to the host program when the user's
mouse enters or exits the button, or the mouse button is pressed/released on the button.
Essentially every possible mouse event causes the CTL value 10 to be returned to the
ProvideX host.

Using COM in JavX - Example

The flexibility of the COM interface in JavX is demonstrated in the following example,
which creates an AWT FRAME and button and places them on a frame.

0070 def object AWTWINDOW,"[wdx]java.awt.Frame"
0080 def object AWTBUTTON,"[wdx]java.awt.Button"
0090 def object EXITBUTTON,"[wdx]java.awt.Button"
0100 def object AWTMULTI_LINE,"[wdx]java.awt.TextArea"
0110 !
0120 ! PRINT awtWindow'*
0130 AWTWINDOW'SETSIZE(260,320)
0140 AWTWINDOW'SHOW()
0150 AWTBUTTON'SETBOUNDS(30,246,80,40)
0160 EXITBUTTON'SETBOUNDS(140,246,80,40)
0170 AWTBUTTON'SETLABEL("Hit Me!")
0180 EXITBUTTON'SETLABEL("Exit")
0190 AWTMULTI_LINE'SETBOUNDS(25,45,200,200)
0200 ! add events
0210 execute "[wdx]on event java.awt.event.ActionListener from

"+str(AWTBUTTON)+" preinput 10"
0220 execute "[wdx]on event java.awt.event.ActionListener from

"+str(EXITBUTTON)+" preinput 20"
0230 !
0240 AWTWINDOW'SETLAYOUT(*-1)

9. External Components JavX COM Support

ProvideX User’s Guide V8.30 Back 303

0250 AWTWINDOW'ADD(*AWTBUTTON)
0260 AWTWINDOW'ADD(*EXITBUTTON)
0270 !
0280 EXITBUTTON'LINE=17.5
0290 EXITBUTTON'COL=18
0300 EXITBUTTON'LINES=3
0310 EXITBUTTON'COLS=9
0320 !
0330 AWTWINDOW'ADD(*AWTMULTI_LINE)
0340 AWTWINDOW'VALIDATE()
0350 AWTWINDOW'REPAINT()
0360 obtain A$
0370 EVT=ctl
0380 if EVT=10 then {
0390 !
0400 LOADTEXT$="Ctl :"+str(EVT)
0410 CURTEXT$=AWTMULTI_LINE'GETTEXT$()
0420 AWTMULTI_LINE'SETTEXT(CURTEXT$+" "+LOADTEXT$)
0430 goto 0360
0440 }
0450 if EVT=20 then {
0460 goto CLEAN_UP
0470 } else {
0480 goto 0360
0490 }
0500 !
0510 !
0520 ! clean up
0530 CLEAN_UP:
0540 AWTWINDOW'REMOVE(*AWTBUTTON)
0550 AWTWINDOW'REMOVE(*AWTMULTI_LINE)
0560 AWTWINDOW'HIDE()
0570 AWTWINDOW'DISPOSE()
0580 delete object AWTWINDOW
0590 delete object AWTBUTTON
0600 delete object AWTMULTI_LINE
0610 end

9. External Components ProvideX Type Library Browser

ProvideX User’s Guide V8.30 Back 304

ProvideX Type Library Browser
The ProvideX Type Library Browser (TLB) is designed to provide extended type
information for Windows COM objects and to help simplify the process of creating
event class objects. This utility (pvxtlb.exe) is freely downloadable from
www.pvx.com.

The TLB can be used to display any COM object's type library, showing the object’s
CoClass and GUID information along with the properties, methods, and events
supported by the control (see below for an explanation of each).

It can also be used to create ProvideX OOP objects that will help simplify the
handling of events generated by COM controls.

Using the TLB

The following steps illustrate how to start the Type Library Browser and display
extended type information for a selected COM object (in this case, the Microsoft
Calendar Control):

1. Start the TLB by launching pvxtlb.exe from Windows Explorer, or via Start >
Run..

2. Select Open from the File menu to display all registered OLE/COM objects. The
Registered Type Libraries dialogue window appears.

3. Scroll down and select Microsoft Calendar Control.

The type library information for the Microsoft Calendar Control is loaded into the
TLB.

Refer to the illustration on the following page.

The Type Library Information section includes a description of the object, the
location and name of the OCX file, and the GUID. (This can be stored internally in
this OCX file or in a separate file with a .TLB extension).

Note: A GUID (Globally Unique IDentifier) is a 128-bit number maintained in the
Windows Registry for uniquely identifying COM objects, DLLs, etc. This number may
be used to obtain details on any COM object in the Registry (type library, physical
location, etc.).

9. External Components ProvideX Type Library Browser

ProvideX User’s Guide V8.30 Back 305

The Classes and Members lists contain all the components of this control.

The Entity Documentation section provides more detail for the selected item
including type information and parameter lists.

4. Click on the Calendar object in the Classes list. This shows that the Calendar object
has two members: DCalendarEvents and ICalendar.

5. The icon to the left of each item denotes the class type. To see a complete list of the
icons used to identify class types in the TLB, select Legend from the View menu.

Refer to the illustration on the following page.

9. External Components ProvideX Type Library Browser

ProvideX User’s Guide V8.30 Back 306

.

The class types are described as follows:

CoClass A CoClass is a COM class which contains a collection of interfaces
defined by the COM object. The Calendar class is considered a
CoClass object.

Interface An interface is a class which exposes methods, properties and
events for use by other objects. The DCalendarEvents and
ICalendar classes are interfaces.

Property Properties are the class's member variables that represent the class's
current state. Typically properties should only be set or read by class
methods. (Refer to the ProvideX OOP documentation for more
information on class functions and properties).

Method Essentially, methods are similar to ProvideX class functions. They
direct the control's behavior.

Event COM objects can generate events to let the host object know
something has changed; e.g., when a user clicks a button
changing the current month, the Calendar object may fire a
NewMonth event. This event will be dispatched to any host object
that has registered to listen for NewMonth events.

Enumeration An Enumeration is a collection of related integer constants. COM
object's Constants are only accessible through Enumerations.

Constant Constants are attributes that cannot be changed, usually numbers;
e.g.,an OCX that controls a multiline object has three constants
representing the possible alignment of text: left, right, and center.
These constants would be exposed through an Enumeration.

Record Records represent collections of elements, called fields.

Field A field is an element variable contained in a record (much like a
single field in an IOList for a file).

Alias An alias is a data type that is a reference to another data type.

9. External Components ProvideX Type Library Browser

ProvideX User’s Guide V8.30 Back 307

6. Close the Legend window and select the ICalendar class. The Members list will
now display the methods and properties of the ICalendar class. This class contains
about a dozen methods with names such as NextWeek() and NextYear(), which can
be accessed using the ProvideX OCX/COM Interface.

7. Select the DCalendarEvents class from the Classes list. The Members list will
display all the methods, properties, and events supported by the DCalendarEvents
class.

Check boxes identify which members are to be used by the TLB for generating an
event template (described below). Initially, they are all selected by default. This
defines all the events the Calendar control can fire.

Cr eating an Event Template

Creating an Event Template

The following steps describe the event template generation feature of the TLB:

1. To create an event template for the DCalendarEvents interface, choose events
(select/deselect check boxes) from the Members list, then click the link Create an
EventTemplate based on this Interface located in the Entity Documentation
section. The Save As file box appears.

2. Save the generated file as DCalendarEvents.pvc. The TLB will generate a text
file that contains the source code for a ProvideX OOP object. This text file can be
opened with an editor, such as Notepad.

The ProvideX event handler class DCalendarEvents.pvc has a function
declared for each member event selected in the Members list. If the NewMonth
event check box is selected then an Event_NewMonth function will be declared.

3. Each function contains a comment "Insert code here". Replace this comment
with the necessary ProvideX code; e.g.,

Print "NewMonth Event has been fired"

9. External Components ProvideX Type Library Browser

ProvideX User’s Guide V8.30 Back 308

Retrieving a Loaded COM Object’s Type Library Information
Retrieving Type Library Information

The TLB accepts optional arguments that enable the retrieval of the type library
information of a given COM object. To retrieve the type library Information of the
Calendar control, pass the name and path of the Calendar OCX. To do this from a
ProvideX console, perform the following

invoke "pvxtlb.exe "+QUO+C:\Program Files\Microsoft
Office\Office\MSCAL.OCX"+QUO

ProvideX objects contain two properties: PvxTypeLib and PvxISA. The PvxTypeLib
property returns the type library file from an object. The PvxISA property contains
the name of the instantiated class. Invoke the TLB from a ProvideX console and pass
the value of these two properties to display the type library information of a loaded
COM object; e.g.,

1. Instantiate the Calendar COM Object:
Def object x, "MSCAL.Calendar.7"

2. Invoke the TLB, passing the ProvideX object's PvxTypeLib$ and PvxISA$ properties:
Invoke "pvxtlb.exe "+QUO+x'PvxTypeLib$+QUO+" "+x'PvxISA$

The TLB window displays the Calendar controls type library with the Icalendar class
highlighted.

An alternative method for invoking the Type Library Browser is to use the ProvideX
command line shortcut program called TLB; e.g.,

Def object x, "MSCAL.Calendar"

TLB x

9. External Components ProvideX OLE Server

ProvideX User’s Guide V8.30 Back 309

ProvideX OLE Server
OLE Ser ver

The ProvideX OLE Server (ProvideX.Script) delivers the reverse functionality to that
of ProvideX COM Support – it allows external applications to directly invoke and
interact with ProvideX and ProvideX objects.

The purpose of this interface is to expose the ProvideX environment to virtually any
outside COM-compliant application. With the OLE Server running, it is possible to
create a ProvideX object, then invoke it from other languages such as VB, VBScript,
Delphi, and C++. You can also use DCOM to invoke the ProvideX object remotely.

General descriptions of Microsoft OLE and COM are provided under Concepts and
Terminology, p.250.

Registration of the OLE Server
Access to ProvideX.Script requires running pvxcom.exe, which is included
with the installation of ProvideX for Windows. Use of the interface may require a
separately-purchased activation key apart from your initial ProvideX for Windows
activation. Further to this, pvxcom.exe may need to be registered manually on your
Windows OS (if registration did not occur with your installation of ProvideX).

To add pvxcom.exe to the Windows registry, enter the following via Start > Run:

path\pvxcom.exe /regserver

path is the directory of the ProvideX version you are running. This can be
unregistered by entering the following via Start > Run:

path\pvxcom.exe /unregserver

One way to verify that the executable pvxcom.exe is registered correctly, is by
running the following VB script:

Set pvx = CreateObject("ProvideX.Script")
pvx.Init ""
pvx.execute("v=tcb(29)")
nm=pvx.Evaluate("v")
MsgBox "Version =" & nm
set pvx=nothing

Just copy the above code into a notepad session and save it as tcb.vbs. Double
click on this file to run the script, which will show you the TCB(29) value reporting
the current build level of ProvideX.

Using ProvideX.Script
The interface is invoked in an external language via ProvideX.Script; e.g.,

VB: Set pvx = CreateObject("ProvideX.Script")
Delphi: pvx:=CreateOleObject("ProvideX.Script")
Java: var oPvx = new ActiveXObject("ProvideX.Script"); // Java

9. External Components ProvideX OLE Server

ProvideX User’s Guide V8.30 Back 310

There are six methods available for use with ProvideX.Script.

There are also three properties associated with the interface:

Additional Properties
To create an object within the OLE Server, the method NewObject is used. It returns
an object identifier to the ProvideX object that was created. Along with the ProvideX
defined properties and methods, the OLE server adds the following properties:

Naming Conventions
Be aware that COM is generally data-type insensitive; i.e., it does not support the $
or % suffix. This can cause a problem when dealing with ProvideX via the OLE
Server, since in ProvideX you can have Cust_no$ and Cust_no (as two unique data
variables).

Init (path) Called before accessing any other method in the script engine in
order to set the working directory for the server and perform
binding to the ProvideX dll layer. The path should be set to the
desired working directory, or blank to indicate the current directory.
(In most cases, the current directory will be the system directory).

Execute (stmt) Invoked to execute any ProvideX command statement.

Evaluate (expr) Evaluates and returns the expression provided and returns its value
as a variant. (It can be used as either a numeric or string).

Run (prog) Runs the specified program. This method does not return until the
program ends.

Reset () Closes all local files and clears variables (executes a BEGIN).

NewObject(name, params ...)
Creates a new object of the specified name and returns an object
reference (see Additional Properties, below).

Instance Returns a unique string to identify the server during its lifetime.

State Returns the state of the server. 0 zero - un-initialized, 1 - initialized.

Parameter Read/write property used to access the specified ProvideX
parameter.

Instance Returns a unique identifier of the ProvideX.Script object that
was used to create the automation object. This is important because
the automation object cannot be passed to another
ProvideX.Script server.

ScriptObject Returns the parent ProvideX.Script object.

CmdHandle Returns the ProvideX handle that the automation object is tied to.

9. External Components ProvideX OLE Server

ProvideX User’s Guide V8.30 Back 311

To avoid this issue, the OLE Server mandates that all property references indicate the
property type in the first character of the property name:

s - for string variables.
n - for numeric variables.
i - for integer variables.
o - for object variables (required).

For example, Cat$ becomes sCat, Dog becomes nDog, and Pig% becomes iPig.
These prefixes are only for use by programs using the OLE Server, not by the
ProvideX application itself. This means that the property Cust_no$ in ProvideX
would be sCust_no when referenced by the OLE Server and the property Cust_no
in ProvideX would be nCust_no, etc.

Use of the o prefix allows the specification of properties and/or methods within
ProvideX objects to be declared themselves as objects.

ProvideX as Windows Script

Through the use of the OLE server, ProvideX itself can become a script language for
any Windows system. ProvideX files saved with a .pvs suffix may be passed to the
ProvideX script engine to be executed as a script in Windows applications.

Using PvxScript
The ProvideX-based script files are exposed through pvxscript.dll, a
specially-built interface that utilizes IActiveScript and IActiveScriptParse for access
to MS scripting (hosts such as IIS, WScript, MS Script Control, etc). Code execution is
passed to pvxcom.exe, which sends commands to pvxwin32.dll. The whole
process looks like the following:

Windows Application --> PvxScript --> OLE Server --> ProvideX

The pvxscript.dll must be installed in the same directory as pvxcom.exe and
pvxwin32.dll. As with pvxcom.exe, the pvxscript.dll may need to be
registered manually on your Windows OS (if registration did not occur with your
installation of ProvideX). Adding PvxScript to the registry ensures the creation of:

1. Default COM registry entries for the ActiveX library.

2. WScript.exe and CScript.exe associations in the registry. This allows you to
create text-based scripts that can be saved with a .pvs extension, and then be
invoked automatically in WScript/CScript (the scripting engine uses the
associations to determine which ActiveScript engine will be invoked).

Note: Do not use these prefixes in the property definition.

9. External Components ProvideX OLE Server

ProvideX User’s Guide V8.30 Back 312

Usage Notes
Script definitions vary slightly from regular ProvideX language syntax in that the
text is basically passed to ProvideX as a series of execute commands. However, there
is an exception: any code that starts with a statement label and ends with END will
be considered a program and built as if it were typed in. After the END directive, you
can then issue a GOTO label; RUN to begin execution of the code (The short cut is
#xxxxx where xxxxx is the label).

Script-based programs do not recognize line numbers in the same manner as
ProvideX. When an error occurs in a script, the line number reported will reflect the
(sequential) line number from the original script input file/document.

Host applications can usually expose what are referred to as "global named items".
These items are COM objects that the host exposes to the script interface to allow the
script to interact with the hosting application. For example: WScript exposes
wscript, wsh; IE exposes window; IIS exposes response, request, etc. It is the
developer’s responsibility to understand the syntax related to the environment
he/she will be developing scripts for. Named items are based on the context of the
host, so the same code may not be valid in all environments.

Sample Script
Following is a .pvs file that may be executed from Internet Explorer:

10 ! preinput -1300;preinput 0;input *
15 ! Uncomment line 10 to get the trace window
20 objArgs = %WScript'Arguments
30 MSGBOX str(%WScript'*)
40 MSGBOX str(objArgs'Count)
50 i=objArgs'Count-1
60 WHILE (i >= 0)
70 MSGBOX Str(i); MSGBOX objArgs'_$(i)
80 WEND
90 MSGBOX %WSH'*
100 STOP
#10 ! GOTO line 10 and EXECUTE
MSGBOX "Done"

This logic executes as follows:

1. Add lines 10 to 100 to the engine.

2. Execute a GOTO 10.

3. Execute a RUN.The code will stop running at line 100 (and the script interface gets
control back).

4. Execute MSGBOX directly.

ProvideX User’s Guide V8.30 Back 313

User’s Guide 10
 Data Integration

As mentioned in Chapter 5. File Handling, ProvideX supports several options for
storing and retrieving data. ProvideX data can be utilized in different ways with a
wide variety of third-party technologies, depending on your system design and how it
fits with your overall system design and user requirements.

This chapter covers ProvideX data integration from different sides of the processing
equation: facilities that enable external applications to access and read ProvideX-based
data — facilities that enable ProvideX applications to store and use data maintained in
an external format.

Introduction to SQL, p.314
External Databases, p.320
ProvideX ODBC, p.340
PVKIO - ProvideX I/O Library, p.343
XML Content, p.344

Overview While most aspects of a business application can be served within the ProvideX
family of products, today’s end-users are often required to work with data that
resides in completely different software worlds. Businesses may need to integrate
popular "off-the-shelf" software with their legacy systems, applications and
databases. ProvideX adheres to all the generally-accepted software standards, and
this level of adaptability allows for the integration of ProvideX applications into
several non-ProvideX environments.

ProvideX components are highly optimized to work together and developers have
the tools necessary to build a sizable database entirely within ProvideX itself. But if
there is a need, ProvideX data can be made readable to external applications via
ODBC or using PVKIO. Conversely, ProvideX applications can be designed to work
directly with data that is stored and maintained in a number of External Databases
or as XML Content, over networks and on completely different operating systems.

In any case, ProvideX has many solutions to help businesses integrate their data,
regardless of the software or platforms involved.

Topics

10. Data Integration Introduction to SQL

ProvideX User’s Guide V8.30 Back 314

Introduction to SQL SQL

Following is a brief discussion on Structured Query Language (SQL) and how SQL
syntax works with ProvideX. It is recommended that you consult specific database
manuals, industry publications, tutorials, and other online resources for more
in-depth SQL documentation.

SQL Terminology, p.314
Data Access Using SQL, p.315
How ProvideX Translates to SQL, p.316
Using SQL Directly Within ProvideX, p.319

SQL is an English-like database access language created specifically for end-users to
view, retrieve, and manipulate information from relational databases. All databases
and/or file systems that supply generic interfaces, such as ODBC, must provide an
SQL interface. ProvideX is no exception to this rule. SQL plays an important role in
some of data processing functionality and interfaces described in this chapter.

Over the years, the language has been standardized by ANSI and adopted by a large
number of database manufacturers. SQL’s original intent was to provide ad-hoc
access to data — not as a development language or as a database interface tool. With
the advent of ODBC and other generic interfaces, SQL has become the de-facto
industry standard for manipulating databases.

Because the SQL language is English-like in its structure, it is easy to learn and
understand. Following is a typical SQL statement:

SELECT cst_id, cst_name FROM Customer

This retrieves customer numbers and names from the Customer table. For other SQL
syntax examples, see Data Access Using SQL, below.

SQL Terminology

SQL has its own terminology (as stated earlier) which is intended to be better
understood by the end-user. It is similar to the terms used to describe a spreadsheet.
Following are the most commonly-used SQL terms:

Database
In SQL, a database is a collection of tables. For example, if you had a Sales Order
application, you would consider all the related tables within the application (such as
the Customer table, the Order table, the Product table, etc.) as a database. A system
can have one or more databases depending on the needs of the application. The
database may consist of one or more physical files.

Topics

10. Data Integration Introduction to SQL

ProvideX User’s Guide V8.30 Back 315

Table
Normally, this term is used to describe a logical rather than physical file. For example,
our database might have a Customer table, Product table, etc. Each tables is referred
to by a meaningful logical name such as Customer, rather than by its physical name.
Depending on the system, each table may be associated with a different physical file,
or several tables may reside within a larger common physical file.

Row
This term applies to each of the logical records within a table (or file).

Column
This term applies to each of the logical fields within each row (or record). For
instance, a Customer file/table contains records/rows which contains
fields/columns such as Customer Number, Name, Address, Amount Owed, etc.

Data Access Using SQL

The basic SQL commands for accessing data are SELECT (to read and return data),
UPDATE (to alter existing data records), INSERT (to add records) and DELETE, (to
remove data records). These are outlined in the sections below. For a complete
overview of the SQL syntax that is supported by ProvideX, refer to SQL Syntax Table in
the ProvideX ODBC Reference documentation.

Reading Data
The SELECT statement is used to READ data from tables in a SQL database.

SELECT columns FROM table
WHERE condition ORDER BY columns

SELECT returns all rows that match the condition specified; e.g.,

SELECT * FROM "table"

This returns all columns from all rows in the specified table. The WHERE clause is
used to specify which rows that the application is interested in retrieving; e.g.,

SELECT * FROM "Customer" WHERE SALESMAN = "MFK"

This would retrieve only those rows which have the column SALESMAN equal to the
value MFK. Ideally, the columns specified on the WHERE clause will be a key/index
field within the database, thus avoiding a linear scan of the table in order to return
only those records that match the criteria.

Also, you can also specify that only certain columns are to be retrieved by stating
their name in the SQL statement; e.g.,

SELECT CUSTOMER_NO, NAME, SALESMAN FROM "Customer"

10. Data Integration Introduction to SQL

ProvideX User’s Guide V8.30 Back 316

Writing and Altering Data
The INSERT statement is used to WRITE new data to a SQL table.

INSERT INTO table (columns)
VALUES (values)

The INSERT directive is used to add new rows to an SQL database; e.g.,

INSERT INTO "Customer" (CUSTOMER_NO, NAME, SALESMAN) VALUES
("123456", "Acme Plumbing", "MFK")

This would add a row/record to the table and update all the required key indices. If
not all the columns for the table were specified in the INSERT command, then the
columns omitted would be set to null. Depending on the database definition, each
field may have validation rules such as ranges, reference tables, etc. If any of these
validation rules are violated, the INSERT reports an error and the row would not be
added.

The UPDATE directive is used to alter the contents of all rows in the database that
satisfy the condition.

UPDATE table SET column=value, …
WHERE condition

If no condition (WHERE clause) is specified, all records in the table are altered; e.g.,

UPDATE "Customer" SET NAME = "Acme Plumbing"

This statement would set the column NAME to Acme Plumbing for all rows/records
in the Customer table. In almost all cases, there will be a WHERE clause when using
UPDATE.

Removing Data
The DELETE directive is used to remove rows from a table.

DELETE FROM table
WHERE condition

Like the UPDATE directive, there is almost always a WHERE clause to identify the
rows to be removed; e.g.,

DELETE FROM "Customer"

The above SQL statement will result in the deletion of all rows in the Customer
table, whereas the following will result in the removal of only those records that
have CUSTOMER_NO = "1234".

DELETE FROM "Customer" WHERE CUSTOMER_NO = "1234"

How ProvideX Translates to SQL

When a ProvideX application accesses an external database and table, file I/O
directives and functions are mapped automatically to the equivalent SQL statements
described previously. This process is described below.

10. Data Integration Introduction to SQL

ProvideX User’s Guide V8.30 Back 317

For documentation on supported interfaces, see External Databases, p.320. For
more information on the ProvideX input and output operations discussed in this
section, see Chapter 5. File Handling.

To open an external database table for access from within ProvideX, the filename
must consist of a [tag] representing the supported interface, followed by the
database and table name; e.g.,

OPEN (1) "[ODB]MYDB;CUSTOMER"

The example above establishes a connection to the ODBC datasource name (DSN)
"MYDB" and table "Customer". Current database interface options in ProvideX
include [ODB], [OCI], [DB2], and [MYSQL]. Specific syntax for these interfaces can
be found in the Language Reference, Chapter 9.

Once the channel is defined as an external database file, ProvideX will automatically
generate SQL statements in place of the input and output operations to that channel.
Each READ, WRITE, and REMOVE is translated into SQL commands specifically for
the selected table; e.g.,

0010 ! SQL001 - Basic SQL access
0020 OPEN (1)"[ODB]MYDB;CUSTOMER"
0030 READ RECORD (1)R$
0040 PRINT R$
0050 END

A simple READ directive to the database and table from the ProvideX application
would issue the following SQL statement:

SELECT * FROM CUSTOMER

Each row of data returned by the SQL statement results in a logical record consisting
of columns with each column separated by the field separator ($8A$). ProvideX has
a built-in SQL debugging facility that allows you to see the generated SQL directive.
To view the actual SQL, set the '!Q=' system parameter.

Keyed Access to an SQL Database
To emulate KEYED file access, the open file name can include the name of the field
(or fields) to be used as the record key; e.g.,

0010 ! SQL002 - Basic SQL Keyed access
0020 OPEN (1)"[ODB]MYDB;CUSTOMER;KEY=CST_ID"
0030 LET K$=KEY(1)
0040 READ RECORD (1)R$
0050 TRANSLATE R$,",",SEP ! Change Sep to ',' for readability
0060 PRINT "Key=<",K$,"> Rec=<",R$,">"
0070 END

The database can then be accessed as if it was a keyed file with the key field being
the CST_ID column; e.g.,

READ (1,KEY="SAGE")

10. Data Integration Introduction to SQL

ProvideX User’s Guide V8.30 Back 318

This converts into the following SQL

SELECT * FROM CUSTOMER WHERE CST_ID = 'SAGE'

A subsequent READ translates to the following:

SELECT * FROM CUSTOMER WHERE CST_ID > 'SAGE'
ORDER BY CST_ID

Multiple KEY= clauses may be specified. The first KEY= clause defines the Primary
key, which must be unique. All subsequent KEY= clauses define the alternate keys
and can be referenced using the KNO= option in the READ and WRITE directives.

The KEY(), KEP(), KEL(), KEF() and RNO() functions can be used against an
external database as well as the RNO= option. KEN() does not return key
information, but it does return information about the database. The REFILE directive
is not supported.

Building an IOList from an SQL Database
If the OPEN directive includes the IOL=* option, then ProvideX automatically
creates an IOList based information in the external database; e.g.,

0010 ! SQL003 - Creating IOList
0020 BEGIN
0030 OPEN (1,IOL=*)"[ODB]MYDB;CUSTOMER;KEY=CST_ID"
0040 PRINT LST(IOL(1))
0050 ESCAPE
0060 READ (1)R$
0070 DUMP
0080 END

ProvideX accesses the internal data dictionary to get fields for the table. Column
names are used to generate field names within the generated IOList. Invalid
characters are replaced with the _ underscore character. Numeric data are converted
to numeric variables, while all other data types are converted to strings.

Defining a Logical Record Layout
If desired, a REC= option can be included in the OPEN pathname to define the exact
format of the record that is to be returned to the ProvideX application; e.g.,

0010 ! SQL004 - Manually defining record
0020 BEGIN
0030 OPEN (1)"[ODB]MYDB;CUSTOMER;REC=CST_ID,CST_NAME+CST_ADDR"
0040 READ RECORD (1)R$
0050 DUMP
0060 END

The REC= option consists of a series of column names separated by either commas
or + plus signs. If column names are separated by a comma, then a field delimiter
character is inserted between the column. If the column names are separated by a
plus sign, then the first column will be padded to its maximum length followed
immediately by the second column.

10. Data Integration Introduction to SQL

ProvideX User’s Guide V8.30 Back 319

In the example, REC=CST_ID,CST_NAME+CST_ADDR yields a record consisting of
the contents of the CST_ID column, a field separator ($8A$), and the contents of
CST_NAME padded to its maximum length, which is immediately followed by the
contents of CST_ADDR.

The record format specified is used as well to parse record data written to the file by
ProvideX programs.

Using SQL Directly Within ProvideX

The generic SQL statements described in the previous sections can also be passed "as
is" from ProvideX to the target database. There are two ways that this can be
accomplished. In the syntax examples below, [tag] represents one of the available
database options, and <SQL> represents an actual SQL statement embedded within
a ProvideX statement.

The following syntax sends the SQL statement through a channel tied to a table
(limited to the size of the KNO used):

OPEN (chan,IOL=*)"[tag]database;table[;fileopt]"
READ (chan,KEY="!<SQL>")

SQL statments can be passed directly using a straight connection to the database
without specifying the table name, as follows:

OPEN (chan,IOL=*)"[tag]database;[;fileopt]"

To issue an SQL statement and retrieve the first result value:

READ [RECORD] (chan,KEY="!<SQL>") iolist

To simply issue an SQL statement:

WRITE RECORD (chan)"<SQL>"

To retrieve the results:

READ [RECORD] (chan) iolist

Note: Ensure that you are using the correct SQL syntax for the target database; i.e.,
refer specific product documentation for the database system being accessed.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 320

External Databases
There are a few ways for ProvideX to interface with non-ProvideX data files. This
material is intended for those who need to maintain their data in an external database.

Selecting a Database Type, p.320
Creating the Database, p.322
Creating Tables, p.324
Creating the Prefix File, p.325
Conversion Process, p.327
Other Considerations, p.339

The facilities described in this documentation are designed to emulate a collection of
ProvideX files in an external database. The primary advantage of this approach is
that the same ProvideX program will work regardless of the database being used.
However, you should be aware that interfacing your application to an external
database can result in lower performance. We recommend that you consult with an
expert in the external database product to help optimize the conversion process.

The ODBC interface is supported in ProvideX for Windows (plus some UNIX/Linux
releases) and it allows access to any database system that publishes an ODBC driver.
Use the [ODB] tag as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests to an external ODBC database. UNIX/Linux servers also
support ODBC through the use of WindX with an open ODBC connection on the
WindX workstation.

The remaining conversion facilities are call-level interfaces to specific products: Oracle,
IBM DB2, and MySQL. These types of databases are supported on Microsoft
Windows and various UNIX/Linux platforms. Access to these databases is denoted
using the [OCI], [DB2], or [MYSQL] tag as a prefix in an OPEN statement. These may
require a separately-purchased activation key apart from your initial ProvideX
activation, so contact your local ProvideX dealer/distributor or visit www.pvx.com
for product information and licensing.

Implementation involves the selection of a target database, or perhaps databases,
and the writing of the routines that will allow the re-creation of the ProvideX
database on the target database. This process is described in the sections that follow.

Selecting a Database Type

As mentioned in the previous section, ProvideX supports different interfaces. The
one that most people are familiar with is Open Database Connectivity (ODBC). This
interface is a set of calls that provide standardized access to a variety of data. The

Topics

Note: Developers should have a good working knowledge of SQL if they plan to use
these facilities. For a brief discussion on SQL, see Introduction to SQL, p.314. A basic
SQL Syntax Table can also be found in the ProvideX ODBC Reference documentation.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 321

data can be stored in a flat file, a proprietary format such as ProvideX, or a Microsoft
SQL Server. ProvideX can read and write that data as long as an ODBC driver exists
for the data store.

The main problem with this approach is the overhead imposed by the ODBC
manager. The call-level interfaces were created for ProvideX to overcome these
limitations. Direct access to Oracle, DB2, and MySQL is available for selected
platforms without the overhead of the ODBC administrator. Another advantage to
using one of the direct interfaces is that functionality that is specific to the target
database can be added to the ProvideX interface.

The decision of which database product to use can be difficult. It depends on the
target market and the customer’s in-house knowledge and skill set. If the target
market is Windows, then it might make more sense to go with MS SQL Server. If the
target market must support clients on UNIX/Linux, then a Microsoft-only approach
may not be feasible.

Each database will need to be evaluated for usability, and each has its own learning
curve – some steeper than others.

Interface Options
Use one of the following Special Command Tags as a prefix in an OPEN statement
to denote that ProvideX is to route all file I/O requests to the selected external
database.

These options are documented in Language Reference, Chapter 9. For additional
information, see OPEN in the Language Reference, p.231.

OLE DB
Object linking and embedding for databases (OLE DB) is a set of Component Object
Model (COM)-based interfaces that provide applications with uniform access to data
stored in diverse information sources, or data stores. OLE DB accesses disparate data

[ODB] Built-in ProvideX functionality. You do not need the ProvideX ODBC
driver to use this tag. ProvideX supports ODBC under Windows as well
as two open source versions of ODBC for UNIX/Linux (iODBC and
unixODBC). Use TCB(197) to determine if ODBC support is enabled
for a given UNIX/Linux system.

[DB2] Requires activation of ProvideX DB2 support. Use TCB(198) to check
if DB2 is supported on a platform.

[MYSQL] Requires activation of ProvideX MySQL support. Use TCB(194) to
check if MySQL is supported on a platform.

[OCI] Requires activation of ProvideX Oracle Call Interface (OCI) support.
Use TCB(200) to check if OCI is supported on a platform.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 322

in a standard, object oriented way when using a Microsoft Operating System.
ProvideX does not have an OLE DB consumer; however, developers may write their
own interface via ProvideX COM Support, p.261.

Connections
When working with an external database, ProvideX does not interact directly with
the data in the file. The data is accessed through an interface. That interface may
result in local calls to a DLL that reads the data from disk, or it might involve
opening a TCP/IP connection to a server on the other side of the planet. This is the
first place where a failure may result in an error not handled by existing code. If the
OPEN fails, an Error #15 will typically occur, with the text provided by the data
provider available via MSG(-1).

Each connection to the database may require an access licence. When using a
Professional or eCommerce bundle, ProvideX will access multiple tables using a
single connection. This results in only a single licence being used. The developer
should calculate the resource cost of a base system with database access licences
against the cost of a Professional or eCommerce ProvideX bundle

Creating the Database

The step subsequent to installing a chosen database system is to create a database, or
databases, for the application. When doing so, be aware of case sensitivity and the
sort (collation) sequence of the database. These issues are discussed below.

Case Insensitivity
Case insensitivity most often affects key values, but it may also affect table names
and column names. While having the table names and column names case
insensitive makes using the database far easier to access and manipulate for the user,
having case insensitive keys throughout the system will likely have major
implications on your application.

If possible, when creating the database, specify a case sensitivity and collation
sequence that matches ProvideX. If you cannot do this then consider that there may
be an impact on the following areas:

• Output sort sequences
• Files that have upper/lowercase keys that are identical
• Usage of extended ASCII characters and hex data in applications.
With the following effects:

• Report sequences will differ, if case is involved.
• Program logic may have to be revisited.
• Cannot rely on the order of the characters.
• Special considerations need to be made when handling mixed case data.
• It is possible that file layout and contents may need reconsideration.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 323

Sort Sequence
By default, Microsoft SQL Server does not use the standard ASCII sort sequence
when maintaining sorted lists. The sort sequence treats upper and lowercase
characters identically and places special characters at a different place within the
sequence. This can cause problems, not only in the order of the data returned, but
also in the program logic.

Generally, while the output of data in reports and screen displays is not a major
problem, users will need to get used to the new sort sequence when reviewing
output. Major problems can arise when the application makes assumptions about
the sort sequence and the order of special characters, numeric characters, uppercase
data, and lowercase data.

An inadvertent lowercase key in a data file can cause problems; e.g., assume the keys,

CAR010, CAR020, Car025, CAR100, CAR150

If you were to write logic such as:

P$ = "CAR"
READ (1, KEY=P$,DOM=*NEXT)
LOOP:
K$ = KEY(1,END=Done); IF K$(1,3)<>P$ THEN GOTO Done
READ (1); PRINT K$; GOTO LOOP
Done:

This would not work correctly (as in ProvideX files) since, as soon as "CAR" is not
the first three characters of "Car025", the loop would exit without processing
CAR100 or CAR150.

Also, consider the impact of upper and lowercase keys during an update. Key fields
with different cases are considered the same; e.g.,

WRITE (1,KEY="Mike")
WRITE (1,KEY="mike")
WRITE (1,KEY="MIKE")

All of the above update the same record as opposed to updating/creating three
unique records in a ProvideX file. The impact of this is that a record key of "Jeans
Unlimited" is the same as "JEANS UNLIMITED". While in many places this is
acceptable, it can cause numerous problems in applications that use upper/lower
case keys as a means to segregate records. Another issue is that the database may
insert accented characters in the sort sequence directly following the non-accented
characters. While this may seem somewhat harmless, it has a major problem if you
attempt to use FF as a partial key; e.g.,

READ (1,KEY = K$+$FF$, DOM=*NEXT)

FF just happens to be ÿ, which means that the above READ positions the file
somewhere between Y and Z – not after Z. We recommend switching to FE,
which does not correspond to any accented characters in most character sets.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 324

Binary Fields
Case insensitivity also applies to accented characters as well; therefore, any use of
high order ASCII data may result in missing data, etc. One solution is to use Binary
fields to resolve the issue. This would result in:

• Sort sequence becomes normal ASCII
• Data becomes case sensitive
• Accented characters return to binary sequence
However, the data can not be used directly in SQL statements, as the following is
required:

SELECT CONVERT(CHAR , column_name)

Products, such as Crystal Reports, may need the data to be converted before it can be
used in a report. In most cases, the key fields usually consist of data that is contained
within the actual record, so that no conversion is needed. Only if the key fields are
required, would they need to used with the CONVERT function.

When using Binary fields in the REC= clause, a :B following the column name
indicates to the ODBC system that the field is Binary. Failure to do this can result in
invalid data being stored in the system.

Spaces and Null Character
Within Microsoft SQL, trailing spaces are considered redundant. This means that
records whose key values differ by trailing spaces only would be considered
equivalent. For example, "ABC" is treated same as "ABC ". In most cases, this
does not cause any application problems, but if the application is sensitive to it, then
the key fields should be defined as Binary.

Another issue is that the null character (HEX 00) cannot be stored in standard text
columns. Therefore, if null bytes are significant to your application, then the column
should be declared as Binary. A null character is used internally to indicate the end
of a SQL statement; therefore, not having the field declared as Binary, will result in
the SQL statement being truncated.

Creating Tables

The first requirement for conversion to an external database is a data dictionary of
some sort. This can be an existing ProvideX data dictionary or a custom solution.
The database must be accurate, as relational databases will not allow strings to be
stored in numeric fields.

To ease the conversion, there should be one table per physical file. If there are
non-normalized (multi-record type) tables this will still be true. Changing this
relationship will require much more extensive testing.

If you are working with ProvideX databases, where an identifier (i.e., company code)
is part of the physical file name, create multiple databases as opposed to multiple
tables. For example, a system with a two-character prefix for the company might

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 325

have physical tables "10customer" and "11customer". Rather than creating two
tables in a single database, create two databases, "C10" and "C11", each with its
own "customer" table. This simplifies integration with third party tools such as
Crystal Reports.

All ProvideX file types are supported, including Indexed and Sort; however, for
special conditions that must be met, refer to Creating the Prefix File, p.325.

When creating tables, be aware of limits such as the length of names, the maximum
size for a particular data type, and possibly the total number of columns allowed per
table. Reserved words (e.g., DATE) in column or table names are not allowed. Also be
aware of what characters are allowed in names.

Date fields require special handling when creating tables. ProvideX only supports a
limited number of translations between the standard database format of
YYYY-MM-DD and the multitude of date formats used in Business Basic. If the
application uses a date format that is not supported by ProvideX, then date fields
must be stored as a simple string in the database. The alternative would be to
request that the format be added to ProvideX, and then wait for a release that
includes that format.

ProvideX Data Dictionary
If you are using an Embedded Data Dictionary, then the process of creating the
database tables is vastly simplified. ProvideX ships with a utility program,
*DICT/GENSQL, that generates the data definition language (DDL) statement from
the data dictionary entries. This utility was written with the intended target of
Microsoft SQL Server, so the syntax of the CREATE TABLE statement may need to be
modified for other databases. For example, Microsoft SQL Server uses the data types
Varchar and Decimal, whereas Oracle uses the keywords Varchar2 and Number.

Creating the Prefix File

The OPEN directive is used to establish a logical connection between ProvideX and
the database. The path name and option string defines the database, the name of
table to be accessed, and a variety of data formatting and processing options.

Use the PREFIX FILE directive to specify the special Keyed file that contains
information to be used for dynamic translations of files when they are opened in
your applications.

The prefix file key is the old file name; i.e., CSTFILE. If the company code is part of
the physical file name, then two separate records are required – one for each unique
file name. For example, if all the files are prefixed by the company code (i.e., 10 and
11), then a 10CSTFILE and 11CSTFILE must exist within the file.

If the same file is opened in different ways (sometimes with an absolute path,
sometimes with a relative path) then each case must be added to the prefix file.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 326

For example,

OPEN(1)"SimpleName"
OPEN(2)"./SimpleName"
OPEN(3)"/usr/data/SimpleName"
OPEN(4)"SIMPLENAME"

Each of the above OPEN's represent the same file, but require a unique name in the
prefix file.

Normally, the pathname contains a variety of file access and formatting options as
well. These options are used to define information regarding how to access the table
to ProvideX. Typically, this includes the definition of the key fields, record
formatting characteristics, and the details regarding variant record processing for
non-normalized files.

Additional options can provide information to the database connection; e.g., user ID
and password, database qualifier name (database name within server), or record
locking characteristics.

Because the size of the string needed to pass this information to ProvideX can
become quite long and, due to the fact that ProvideX limits file path names to a
maximum of 511 characters, options can be specified in the OPT=string clause for
the OPEN. Options provided in the OPT= string are not treated any differently than
those options passed in the pathname.

The prefix file data records consist of the actual pathname to use in the first field and
the option list in the second field. For example, in MAS200 (pre-Version 4.x) the ARF
terms code file is described as follows:

File: ARFABC.SOA
Fields: TermsCode 2char (concatenated with)

Description 30char (concatenated with)
DaysBeforeDue 3char (concatenated with)
DueDateADayOfMonth 1char (concatenated with)
DaysBeforeDiscDue 3char (concatenated with)
DiscDateADayOfTheMonth 1char (concatenated with)
MinDaysAllowedInvDue 3char (concatenated with)
MinDaysAllowedDiscDue 3char (concatenated with)
DiscountCalcMethod 1 char
DiscountPercentage numeric 19.7

Key: TermsCode

To record the definition to the prefix file:

KEYED "PFXFILE",12
OPEN (1) "PFXFILE"
WRITE(1,KEY="ARFABC.SOA")"[odb]MAS90MFK;ARF_TermsCodeMasterfile;DB=MAS_AB

C;","KEY=TermsCode;REC=TermsCode:2+Description:30+DaysBeforeDue:3+D
ueDateADayOfMonth:1+DaysBeforeDiscDue:3+DiscDateADayOfTheMonth:1+Mi
nDaysAllowedInvDue:3+MinDaysAllowedDiscDue:3+DiscountCalcMethod:1,D
iscountPercentage:19.7"

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 327

CLOSE (1)

Generally, we suggest that the first field contains the DSN/Table declaration and the
second field contains the record layout.

Once this record is created, the application can enable the PREFIX FILE and access the
database table by opening the file ARFABC.SOA.

->PREFIX FILE "PFXFILE"
->OPEN (1) "ARFABC.SOA"
->PRINT PTH(1)
[odb]MAS90MFK;ARF_TermsCodeMasterfile;DB=MAS_ABC;
->

The file will need to be created with a record size large enough to accommodate the
largest file definition string that the application requires. A prefix file with a record
size of 4000 bytes is not uncommon.

Conversion Process

The conversion process moves the data from the ProvideX database to the new tables
in the target database. It may also involve some program modifications for the
application to function correctly and efficiently with the new database.

Loading the Data
Once the prefix file has been defined, the load is as easy as read record – write record.
There are two approaches to opening the existing tables and the database. One
approach is to set the prefix file (using the PREFIX FILE directive), open the data
directory, then (for each file in the data directory), to open the physical file plus the
database table; e.g.,

10 begin
20 prefix file "db2_prefix.dat"
30 open(1)"data/"
40 read (1,end=eod)f$
50 open(2)"data/"+f$! include the directory so it doesn't match prefix

file key
60 open(3)f$! prefix file will redirect to database
70 read record (2,end=eoi)r$
80 write record(3)r$
90 goto 70
100 eoi:
110 close(2); close(3)
120 goto 40
130 eod:
140 print "done"

This approach works well with a few data directories, but it can be clumsy when
there are complex prefix rules. An alternative approach is to open the prefix file and
use it in conjunction with the prefix rules to open the physical data files.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 328

Considerations When Loading Data
The approach taken for opening tables can vary depending on the conversion
situation. If it is a one-off conversion, then hard-coded paths may be acceptable.
However, if the conversion may have to be run on hundreds of sites, each with a
unique directory structure, then a more flexible procedure should be considered.

Be sure to account for reloads. It is unlikely that the data load will only be run once.
It is more likely there will be multiple loads, as the process is adjusted to achieve
correct data conversion. A table may need to be reloaded because, either the
database table itself changed, or the rules applied by the prefix file have changed. It
may be that the entire conversion will need to be re-run, or a single table may need
to be reloaded.

One of the more difficult situations to handle is when the database table has been
altered. It is best to manually adjust the input database rather than write a routine
that must check for differences between the database table and the original
definition. This is not impossible, and it can be accomplished using the *dict/sql and
related objects.

Test Your Application
This is the area that will take the most time. Every line of code that affects what is
read or written to file needs to be tested. Before and after versions of reports need to
be compared, and every insert, update, and delete needs to be tested. Timing tests
should be run to see which areas suffer significant performance degradation due to
the overhead associated with the external database system.

Other areas that need to be thoroughly examined are those that involve file creation,
deletion, or renames. One example would be the creation of a new company. This is an
area that has to be re-written if the logic creates new keyed files, as the KEYED
statement is not translated into a CREATE statement. Not only would the table creation
have to be addressed, but the tables would also need to be added to the prefix file.

Also check areas that depend on the FIN() and FIB() functions. These functions do
not contain all the information that is available for a Keyed file; e.g., the key
definitions and current record count are not available.

Dynamically-named temporary tables can also be difficult to emulate. Often these
files are left as ProvideX files due to their temporary nature.

If a version of ProvideX prior to Version 7 is used, the ERASE and PURGE directives
are not supported on external database tables. Support for these directives was
added in Version 7; however, they may still fail if there is insufficient information to
open the database.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 329

Performance Tuning
Generally speaking, external databases are slower than native ProvideX files. This is
for two reasons usually: 1- indirect access to the data, 2- different data models (result
set versus row set orientation). However, by adjusting a number of system options,
you may be able to improve system performance (substantially in some cases). The
following approaches can be taken to improve the performance of an application:

• Shared connections.
• Eliminate data dictionary lookup (define record layout).
• Using the TOP option in the SELECT statement.
• Stored procedure for RNO.
• Using the TSQL option.
• Prepared statements.

Shared Connections
Using shared connections reduces time to OPEN files and uses less resources and
users on the server. This is enabled by default for ProvideX Professional or
eCommerce activations, unless the INI file contains UNIQUE=Y, or y, or 1.

It shares connections in same sessions that:

• Have same DSN/database name
• Have same database/qualifier
System performance is improved by sharing the connection, since all the logic
involved with user authentication, security, and establishing the connection, is
avoided. This leads to quicker file OPENs in the application, as well as reduced
system resources by sharing connections.

Another advantage of using shared connections is that database servers often charge
based on the number of concurrent connections used. Sharing a single connection
per process can reduce costs.

The criteria to share files is that both must have the same DSN and
Database/Qualifier name (case is not important).

Eliminate Data Dictionary Lookups
By default, whenever ProvideX opens an external database, it reads the data
dictionary for the table in order to determine column names, data types, and format
(size/scale). This can account for a significant amount of processing and data transfer
overhead. It can be particularly critical if a file is being opened only to access a couple
of records.

Note: Some of these settings may not be ideal for all applications.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 330

In order to avoid this, include the field format on the REC= clause. If all the columns
specified in the REC= clause have their size and type defined, then ProvideX will
not attempt to read the data dictionary for the table and will assume that the
definition supplied is correct.

There is one drawback to defining the field formats on the REC= clause. There is no
run-time validation to check that the columns that have been specified, actually exist
within the database. Therefore, it is possible to cause ProvideX to create SQL
directives that cannot execute.

Defining the Record Layout
The REC= phrase is used to control the formatting of the data record as viewed by
the ProvideX application. The format consists of a series of field descriptors and/or
literals, each separated by either a comma or a plus sign. (Record type indicators can
be present within the REC= phrase as well, but these will be discussed later.)

The simple format is:

REC= fieldspec { , or + } fieldspec …

Where:
The fieldspec contains the name of the field and optional format, length, and scale.
Fields are separated by either a comma or plus sign. When comma-separated, then a
field delimiter is inserted. When plus-separated, then the field is padded to full size
and no separator is inserted. Literals may be included if enclosed in apostrophes.

Example:
REC=CST_ID, NAME, ADDRESS

This results in a record with three fields, each separated by a field separator.

REC=CST_ID + NAME + ADDRESS

This results in a record consisting of the fields with each one padded to its full length
and no intervening field separator. For example, if CST_ID is 6 characters long and
NAME and ADDRESS are both 30, then the record would be 67 characters long,
including the record terminator.

Any column name can be followed by an optional colon and format specification.
This format specification consists of a data type (if not numeric or string) followed
by the field length. If the field is numeric, the length includes a decimal point
followed by the number of decimal positions.

The possible data types are:
P Packed (BIN) data
H Data is stored in HEX
B Data is a Binary field
D Field is a Date
Some examples would be:

CST_ID:7 (string, seven characters long)
OWING:8.2 (8 digits with 2 decimal places)

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 331

AMOUNT:P4.2 (4 bytes containing BIN value scaled by 100)
NAME:B30 (30 byte binary field)

It is a good idea to include the field descriptions for all fields since this prevents
ProvideX from having to read the table's data dictionary to determine field sizes and
types. If ProvideX has to use the database dictionary, the REC= values may be
overwritten.

Hex and Binary values can be used to store non-printable and/or binary data that
would cause problems otherwise when passed in a SQL statement. Binary fields
(type P) can be used to define numeric data that has been packed into a string using
the BIN() and DEC() functions. If specified, the scale indicates the number of
implied decimal places that the value contains.

Literals may be inserted within the record layout in order to insert padding where a
field or column is not presently used, but space has been reserved for it. Literals
should be enclosed with apostrophes and separated by a comma or plus sign.

Defining a Keyed File
The following is required:

• DSN or database name
• Table name
• Record format optional, if each field matches the database definition
• Keys using the KEY= option
• First KEY= is KNO #0, Second is KNO #1, …
The most common file format within ProvideX applications is a Keyed file where the
key for the record is contained in the record data. These types of files can be defined
directly as tables with each data field defined as a single column in the database.

The KEY= clause can be used to define the field(s) that comprise the record key. If
more than one key is required then multiple KEY= clauses can be included for each
alternate key required. The following is an example of the definition for a Keyed file:

File: ICALPXF

Key 1: Company, Item_num
Key 2: Company, Alpha_sort, Item_num
Key 3: Company, Stocked, Alpha_sort, Item_num
Key 4: Company, Update_Inventory, Alpha_sort, Item_num
Key 5: Company, Stocked, Update_inventory, Alpha_sort, Item_num

Definition:

Fields: Company 2 char
Alpha_sort 10 char
Item_num 20 char
Stocked 1 char
Update_Inventory 1 char

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 332

[DB2]MYDB;IC_ITEM_ALPHA;
REC=COMPANY, ALPHA_SORT, ITEM_NUM, STOCKED, UPDATE_INVENTORY;
KEY=COMPANY, ITEM_NUM; KEY=COMPANY, ALPHA_SORT, ITEM_NUM;
KEY=COMPANY, STOCKED, ALPHA_SORT, ITEM_NUM; KEY=COMPANY,
UPDATE_INVENTORY, ALPHA_SORT, ITEM_NUM; KEY=COMPANY, STOCKED,
UPDATE_INVENTORY, ALPHA_SORT, ITEM_NUM

This would declare a Keyed type of file with one primary and four alternate keys.

Defining an Indexed File
The following is required:

• DSN name
• Table name
• Record format
• Record Index field
• Must be a numeric field in database
• Should be 8 digits in length - no decimal points
While databases do not typically support an Indexed-style table structure, ProvideX can
emulate this file structure using a numeric field within the table as the record index. This
numeric field should contain a minimum of 8 digits with no decimal points.

The following is an example of the definition for an Indexed file:

File: PODABC.SOA

Definition:

[MYSQL]MyDB;POD_POMessage;
IND=IndexSql:8; TYP=IndexSql,1,8; REC=?"00000000"+
RecordsActivelyUsed:19.7, MaximumRecordsInFile:19.7,
NextNewIndexAvailable:19.7, LastRemovedIndexRecord:19.7+
?"........"+ StdMessageLine1:50+ StdMessageLine2:50+ ' '

Defining a Direct File
Basically, this is the same as a Keyed file. The following is required:

• If the External Key does not exist as field(s) within the record data, then the
KEYDATA= clause must be specified.

• KEYDATA= must specify a single field
• This field is the primary key of the record

Index field: IndexSql Numeric 8
Fields Rec#0: RecordsActivelyUsed Numeric 19.7

MaximumRecordsInFile Numeric 19.7
NextNewIndexAvailable Numeric 19.7
LastRemovedIndexRecord Numeric 19.7

Fields other: StdMessageLine1 50 char (concatenated with)
StdMessageLine2 50 char

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 333

• Field must not appear within the REC= fields
Most Direct files can be defined using the same format as a Keyed file. However, if
the key for a Direct file is not contained within the data columns, then a special
OPEN syntax is required. This is due to the fact that ProvideX normally attempts to
generate the record key from the contents of the record data columns.

The KEYDATA= option is used to define a single column name for the data that
contains the record key. In many cases, it will be used when the key is not derived
directly from the data in any logical manner or when the file is non-normalized and
the key components vary from record type to record type. The column specified in
the KEYDATA= clause must not exist in the REC= clause.

The following is an example of the definition for a Direct file whose key is not made
up of column data and contains two record types:

File: ARWABC.SOA

Definition:
[ODB]MyDB;ARW_GlobalCustRenEntry
KEYDATA=KeySql:B10; TYP=RecordNo,1,1; REC=?"F"+RecordNo:1+
FromDivision:2+ FromCustomerNumber:7+ ToDivision:2+
ToCustomerNumber:7+ ?"T"+RecordNo:1+ ToDivision:2+
ToCustomerNumber:7+ FromDivision:2+ FromCustomerNumber:7

Basically, the key for this file is the record as defined, thus the actual columns used to
create the key, vary between the "T" and "F" records.

Defining a Sort file
Defining a Sort file requires the following:

• DSN and table name.
• Record format.
• Fields must be concatenated with the '+' operator.
• Specify KEY=*.
• This indicates that the key is the record.

Fields "F" rec: RecordNo 1char (concatenated with..)
FromDivision 2 char (concatenated with..)
FromCustomerNumber 7 char (concatenated with..)
ToDivision 2 char (concatenated with..)
ToCustomerNumber 7 char

Fields "T" rec: RecordNo 1char (concatenated with..)
ToDivision 2 char (concatenated with..)
ToCustomerNumber 7 char (concatenated with..)
FromDivision 2 char (concatenated with..)
FromCustomerNumber 7 char

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 334

• No record data will exist logically.
Sort files pose a different problem to the ProvideX interface, as there is no data
record but just a key field.

To define a Sort file, the table definition should contain the columns that are required
to construct the key with a REC= clause which defines the layout of the key. This
requires the use of the + plus sign between all the fields. Use a KEY=* option to
indicate that the record itself is the key and that no record actually exists.

An example of an OPEN definition for this type of file follows:

File: ARCALX

Definition:
[ODB]MyDB;AR_Cust_Alpha ;
REC=Company+Alpha_Sort_key+Customer_Num ; KEY=*

TOP option in the SELECT statement
The TOP= option is a method to limit the number of rows being retrieved for a result set.
The syntax varies between databases but the effect is the same. It reduces data transfer.

Specifying the TOP=nnn option, either in the appropriate database section of the
ProvideX INI file or on the OPEN options, indicates to ProvideX that the database
accepts the "SELECT TOP nnn ..." SQL command. If this option is not present, then
ProvideX assumes that the database does not support this capability. The DB2, MySQL,
and Oracle interfaces also support TOP=; however, they use the database specific syntax.

If TOP= is provided using the value -1, then the KEF(), KEL(), and KEP() functions
will generate code that requests only a single record from the database. Without the
option, these functions generate SQL statements that will result in a dataset the size
of the table being generated.

In addition, if this option is specified with a positive non-zero value, then the standard
read next logic will limit its reads to a series of SELECT statements, each limited to the
number specified. This may reduce unneeded data selections from occurring. For
example, consider a file with 1,000 records that are grouped by individual prefixes so
that never more than 20 records are retrieved. By adding TOP=20, the database will stop
generating the result set once it has found 20 records.

If TOP= is greater than zero, it is possible to 'lose' records. When a non-unique key is
read sequentially with a TOP= clause, once the result set is read, ProvideX will start
with the next group of records. For example, five non-unique alternate keys:

ID, Job
0001 MANAGER,
0002 MANAGER,
0003 SALESREP,

Fields: Company 2 char
Alpha_Sort_Key 10 char
Customer_Num 10 char

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 335

0004 SALESREP,
0005 SALESREP

If reading the above using Job as the sort sequence and a TOP= value of 1, then only
one MANAGER record, and one SALESREP record would be retrieved; i.e.,

0001, MANAGER
0003, SALESREP

This is because the result set is exhausted after one READ, so ProvideX would
generate a WHERE clause with the value greater than the value just read. The SQL
statements are:

SELECT TOP 1 * FROM Employee WHERE Job > ''

A READ retrieves ID 0001. The next READ returns no data, so the next SQL statement is:

SELECT TOP 1 * FROM Employee WHERE Job > 'MANAGER'

A READ retrieves ID 0003. The next READ returns no data, so the next SQL statement is:

SELECT TOP 1 * FROM Employee WHERE Job > 'SALESREP'

This returns end-of-file.

Stored Procedure for RNO
This applies to applications that use the RNO() function in ProvideX.

The RNO= file access option requires that the system is able to position itself to a
record specified by its logical sequence within a file/table. Unfortunately, there is no
equivalent functionality within most external databases.

The standard ProvideX implementation of access by RNO involves SELECTs of the
complete data set, then skipping forward to the specified record. This is a slow
process that can have a major impact on the system performance. If possible,
consider re-engineering code using RNO.

In order to improve the performance when running against an external database, use
the EXEC_SPRNO option on the database OPEN and execute a stored procedure to
duplicate this functionality. The RNO() search is performed on the host, which
minimizes data transfer and provides much faster access times. The disadvantage to
this approach is that database-specific knowledge is required to create the stored
procedure. The following stored procedure has been used with MS SQL Server:

1st field:

 [odb]MAS200SQL;APB_CheckHistory;DB=MAS_PVX;

2nd field:

KEY=BankCode,CheckNumber,SeqNumber;KEY=Division,VendorNumbe
r,BankCode,CheckNumber,SeqNumber;REC=BankCode:1+CheckNumber
:6+SeqNumber:1+ CheckType:1+CheckDate:D+ ClearedBank:1+
Division:2+VendorNumber:7+Source:2+PayeeName:30,CheckAmount
:19.7;EXEC_SPRNO

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 336

You must create a stored procedure for each table and key that an RNO is need for.
Format: spRNOtablename_keynumber.

The RNO stored procedure (written for MS SQL Server):

CREATE PROCEDURE [spRNOAPB_CheckHistory_0]
(@rno int)
AS BEGIN
SET NOCOUNT ON
DECLARE @BankCode VARCHAR (1)
DECLARE @CheckNumber VARCHAR (6)
DECLARE @SeqNumber VARCHAR (1)
DECLARE tmpCur CURSOR DYNAMIC FOR
SELECT BankCode,CheckNumber,SeqNumber FROM APB_CheckHistory ORDER BY

BankCode,CheckNumber,SeqNumber
OPEN tmpCur

Fetch Relative @rno from tmpCur INTO @BankCode,@CheckNumber,@SeqNumber

CLOSE tmpCur
DEALLOCATE tmpCur
SELECT * from APB_CheckHistory WHERE BankCode = @BankCode AND CheckNumber

= @CheckNumber AND SeqNumber = @SeqNumber
END

The above stored procedure creates a cursor that represents the keys of all of the
records in the table sorted in the order as defined by the key. Then, we issue a
relative fetch of the desired record to obtain the key for the record, and then use this
key to actually read and return the record.

Using the TSQL option
Many applications read data files sequentially looking for selected records, such as
un-printed invoices, past due accounts, accounts with current transactions, etc.
Application execution time can be improved by having SQL server pre-process the
data and return only those records that the application requires.

In order to accomplish this task, the TSQL= option was added for external databases.
The TSQL option allows a manually defined SQL SELECT directive that is going to be
used to retrieve the file data for the application.

When using a TSQL directive, simple READ NEXT statements (or KEY() functions)
will execute the SQL command provided in order to obtain the data. The SQL
statement must be constructed manually – ProvideX won't do it.

Use of the TSQL function requires application changes, as well as a fair amount of
SQL expertise. It is not an easy change to implement, but the results can be very
impressive in the areas implemented.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 337

The following example shows a simplified use of the TSQL= option. Note the use of
the REC= clause. Failure to correctly define the resulting record can cause memory
corruption. The SQL statement in the example returns only two columns of a larger
table where the employee ID is less than 7600, sorted by name descending.

0030 OPEN (1)"[oci]robertf.pvx;emp;user=scott;pswd=demo;tsql=select
empno, ename from emp where empno < 7600 order by ename
desc;rec=Empno:N22,Ename:C20"

0051 READ RECORD (1,END=*NEXT)r$; PRINT CVS(CVS(SUB(r$,SEP," *
"),16),32);

 INPUT 'CI',*; IF CTL<>4 THEN GOTO *SAME

Prepared Statements
Basically, an SQL prepared statement is a parameterized SQL statement that can be
pre-compiled, then re-executed repeatedly while simply changing the parameter
values. A typical use of this would be to access a file by a key where the SQL
statement rarely changes other than in the key value itself. The advantage to this
approach is that the database server does not need to re-compile the statement on
every execution. This technique may improve performance significantly; e.g.,

SELECT BankCode, CheckNumber, SeqNumber, CheckType,
CheckDate, ClearedBank, Division, VendorNumber, Source,
Source, PayeeName, CheckAmount
FROM "APB_CheckHistory"
WHERE BankCode = ? AND CheckNumber = ? AND SeqNumber = ?

ProvideX will generate the above SQL statement and pre-compile it. Then, when
accessing the file by key, it simply re-executes the statement after changing
parameters 1, 2 and 3.

Multiple Record Types
Non-normalized files are a critical aspect of a number of applications. These are files
that use multiple record formats to contain the data used by the application.
Applications developed by many Business Basic developers have a number of these
types of files. Unfortunately, this type of data structure is not supported in a
normalized database, such as IBM DB2, or MS SQL Server.

In order to migrate these files to a SQL-based database, the table contents have to be
normalized. The ProvideX database interfaces have a mechanism built into it to
convert data from a SQL normalized file to appear as a non-normalized file. The
approach used is to define one column for each potential field which can exist in all
the different record layouts within the table that contains the ProvideX data file
contents. Then, we define to ProvideX the record layout to be used based upon the
contents of one or more fields.

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 338

In order to accomplish this, ProvideX must know which fields/columns contain the
data needed to determine the record format to be used. The column(s) are declared
in the TYP= option. If multiple columns are required, each column must be
separated by a plus sign as in:

TYP=CST_ID+CST_TYPE

This requires the definition of values to be returned by the contents of the fields
defined in the TYP= clause within the REC= clause. These values are identified by
question marks followed by the contents to match against the fields.

The contents of the value to match can contain a number of special characters that
are designed for simplified matching:

The column names specified in the TYP= clause can be followed by a comma and a
length specifier, if you only want the first nnn columns used in the match. For
example, the clause TYP=CST_ZIP,3 would only check the first three positions of
the field CST_ZIP.

The following is a typical example of a non-normalized file, where each record has a
three-character prefix on the key field definition:

File: GCOMP (two record types "G/L" and "DPT")

Definition:
[db2]MyDB;GL_Dept_master;

 . Period - matches any character.

[abc] Matches any of the characters a, b, or c.

[0-9] Matches any of the characters between 0 and 9.

[] Matches end-of-string / no data.

^ If the first character is a '^', then records that don't match the string are
selected; e.g., '?^PROD' selects anything that doesn't match PROD.

All record: Prefix Key 3 char
Company Key 2 char
Id Key 10 char (Dept or Acct #)
Name 35 char (Dept or G/L name)

"DPT" rec: Restriction_flag 1 char

"G/L" rec: Control_acct 1 char
Stmt_A_Line 4 numeric
Stmt_B_Line 4 numeric
Subaccount_flag 1 char
Inventory_acct 1 char
Print_zero 1 char

10. Data Integration External Databases

ProvideX User’s Guide V8.30 Back 339

KEY=Prefix,Company,Id; TYP=Prefix;
REC=?"DPT",Prefix,Company,Id,Name,Restriction_flag,?"G/L",
Prefix,Company,Id,Name,Control_acct,Stmt_A_Line,Stmt_B_Line,
Subaccount_flag,Inventory_acct,Print_zero

Other Considerations

In a perfect world, the application works flawlessly with the new database. The
reality is that some things may not work correctly, and the application will need to
be adjusted.

Views
Views programs may fail when trying to access index information that may not have
been included in the conversion.

Complex Variant Records
Occasionally the rules required to identify the correct variant record are so complex,
the syntax does not support the record definitions. These types of files require the
use of the RECDATA= option. RECDATA= specifies the column name that represents
the data. The data type of this column is typically Binary, as no processing of any
sort is performed upon it. No attempt is made to parse the data or apply indices.
This option requires the use of KEYDATA=. Alternate keys are not supported.

File Information
Programs that depend on FIB() or FIN() will typically fail as not all the information
about the file exists.

10. Data Integration ProvideX ODBC

ProvideX User’s Guide V8.30 Back 340

ProvideX ODBC ODBC

The ProvideX ODBC driver enables any ODBC-compliant application on any
Windows platform to communicate with your ProvideX database from any location,
including over a network. For more information, see About ODBC below. For
complete information on this subject, refer to the ProvideX ODBC Reference
documentation.

Currently, two ProvideX ODBC configurations are available for download:

• Local ODBC, p.341

• ODBC Client-Server, p.342

ProvideX ODBC installations are available with or without Microsoft Data Access
Components. If you choose not to install MDAC, the installation automatically verifies
if your current version of MDAC (if any) is compatible with ProvideX ODBC.

These products are available separately from the base ProvideX installation and
require separate licenses, installation files, and activation procedures.

About ODBC

ODBC is the acronym for Open DataBase Connectivity, an interface standard that
maintains a common access method for DBMS (DataBase Management Systems). The
ODBC interface provides a standard set of functions or APIs (Application Program
Interfaces) that allow applications to access a variety of ODBC-compliant databases.
It also administers the database names and drivers associated with the data files.
ODBC access is based on SQL, p.314.

ODBC Architecture
Typically, the standard ODBC architecture consists of four major components:

Application Responsible for interacting with the user and for calling ODBC
functions to submit SQL statements to, and retrieve results from,
one or more data sources.

Driver Processes the ODBC function calls, submits SQL requests to a
specific data source, and returns results to applications. Also, the
driver is responsible for interacting with the software needed to
access a specific data source.

Driver Manager Loads/calls drivers on behalf of an application. The driver manager
processes ODBC function calls or passes them to the driver.

Data Source Represents the data to be accessed. It can be a flat-file, or a
particular database in a DBMS. It also refers to the actual location
of the data as well as any technical information needed to access
the data (driver name, network address, user ID, password, etc.)

10. Data Integration ProvideX ODBC

ProvideX User’s Guide V8.30 Back 341

This architecture enables an application to access different ODBC data sources, in
different locations, using the same function calls available in the ODBC API.
Components interact in the following chain of events:

1. ODBC-compliant application uses API calls to submit SQL directives to the data
source.

2. Communication between the application and ODBC driver is handled by the driver
manager, which loads the driver and passes along the API requests.

3. The ODBC driver implements ODBC API functions for the selected DBMS data source.

4. Requests are processed by the data source, and the results are sent back up the chain to
be retrieved by the application.

Implementation

The ProvideX ODBC driver itself is easy to implement. It installs automatically from
the setup program. Open the Microsoft ODBC Administrator’s control panel applet
and create a new ProvideX Data Source Name (DSN). Once a DSN is established,
other applications will be able to use SQL requests to access the ProvideX native
database. The driver also supports a “DSN-less” connection to ProvideX data using a
connection string supplied by the calling application.

Local ODBC

ODBC allows your ProvideX data to be accessed by the most popular database
managers, query applications, and report writers: MS SQL Server, Excel or MS Word
with MSQUERY, Crystal Reports, just to name a few. Most programming languages
have an ODBC access facility to allow files to be read or updated as well.

ODBC and SQL allows standardized access to ProvideX data via:

• Standardized data formats (text strings, numerics, dates).

• Logical relationships (relates files with common data elements).

• Data sorting, grouping and filtering.

• Simple Data computations (Sum, Max, Min, Count, Avg).

The ProvideX ODBC driver supports three basic types of data: strings, numerics, and
dates. The SELECT statement is used to establish logical relationships between data
files (usually referred to as joining files). A typical join would be:

SELECT cst_id, cst_name, smn_name FROM Customer, Salesman
WHERE smn_id = cst_smn

The statement reads the entire Customer file and for each customer, reads the
Salesman file for any records whose smn_id matches cst_smn. If the field smn_id is
a Key field for the file, then the ProvideX ODBC driver reads the file directly by key,
otherwise the file is read in its entirety. The WHERE clause can be used to selectively
filter out any unwanted data.

10. Data Integration ProvideX ODBC

ProvideX User’s Guide V8.30 Back 342

The ODBC driver can sort the data on any field using the ORDER BY clause of the
SELECT statement. If the ORDER BY fields match any of the key fields of the primary
file, then the primary file is accessed by this key. In addition, you can GROUP data BY
common fields.

SUM, COUNT, AVG, MAX, MIN functions can be used to provide statistical information
on the data fields.

The complete list of supported SQL keywords can be found in the ProvideX ODBC
Reference documentation.

ODBC Client-Server
For greater performance and security over the network (without the need for
additional software) consider the client-server version of the ProvideX ODBC driver.
This interface performs optimization of query processing on the server side to ensure
safe high-speed access to your data, particularly for implementing distributed
multi-user applications.

The client side is freely distributable. However, to be operational, it must be
connected to a fully installed and activated ProvideX File Server (included with the
Professional and eCommerce product bundles). For further details, refer to the
ProvideX ODBC Reference documentation.

10. Data Integration PVKIO - ProvideX I/O Library

ProvideX User’s Guide V8.30 Back 343

PVKIO - ProvideX I/O Library PVKIO

The ProvideX IO Library (PVKIO) consists of a set of functions that can be used with
programs written in C, C++, and other programming languages. These functions
enable direct access to ProvideX keyed and indexed data files from applications that
are external to ProvideX and have been pre-compiled for use in MS Windows, AIX,
RedHat, and SCO UNIX.

The ProvideX IO Library includes functions for performing a variety actions; i.e.,

• Allocate/de-allocate environment
• Get/Set environment variables
• Extend file open
• Close file
• Read a record from a file
• Position within keyed/indexed file
• Write/rewrite a record
• Write a new record
• Update an existing record
• Remove a record
• Get/Set address/position within file
• Return last error status, last error message
• Read dictionary
• Point to internal structure block
• Describe file
• Get tables in catalog.

For a list of all the available functions, and for syntax details, refer to the ProvideX
PVKIO documentation.

Use and distribution of PVKIO requires a separately-purchased activation key apart
from your initial ProvideX activation. A warning message to this effect is presented
whenever a file is opened unless the application first invokes the PVK_register()
function with a valid registration string and registration number. Contact your local
ProvideX dealer/distributor or visit www.pvx.com for complete product information
and licensing.

Note: PVKIO does not support EFF files, Enhanced File Format, p.106.

10. Data Integration XML Content

ProvideX User’s Guide V8.30 Back 344

XML Content
The ProvideX *XML Interface can be used to access, parse and create documents
based on XML DOM (Document Object Model). It provides a standardized method
for sharing data, making it easier to store, transmit, and display information across
different applications and platforms.

This product may require a separately-purchased activation key apart from your initial
ProvideX activation. Contact your local ProvideX dealer/distributor or visit
www.pvx.com for complete product information and licensing.

About XML

XML (Extensible Markup Language) was developed by the World Wide Web
Consortium (W3C). It is a simplified version of SGML (Standard Generalized
Markup Language) that allows designers to create their own customized tags, and
enables structured definition, transmission, validation, and interpretation of data.

Like HTML (Hypertext Markup Language) XML was created to specifically address
the issue of writing documents for the Web. However, the two languages are really
intended for two different purposes. HTML focuses on the presentation of
information to users, while XML deals with the data itself. HTML is able to change
the look of a web page, while XML does nothing but describe the data and must be
used in conjunction with other languages.

While it was originally designed for Web publishing, XML has a variety of other uses
as a portable document structure. It is now widely used in content management
systems, eCommerce transactions, direct-to-consumer implementations,
bibliographic referencing, mobile/handheld devices, and many other commercial
applications.

Further information on the advantages and capabilities of XML can be found on the
Internet, in public forums and various industry publications.

ProvideX XML Interface

The XML Interface can be used to parse and serialize XML documents for use with
your ProvideX applications. This facility is built on the Xerces XML Parser, which is an
open-source C++ library for parsing, generating, manipulating, and validating XML
documents based on the W3C DOM specification.

DOM (Document Object Model) is the language-neutral interface that allows
programs and scripts to dynamically access and update the content, structure, and
style of XML documents. It is used to define the objects and properties of all
document elements, and the methods (interface) for accessing them.

10. Data Integration XML Content

ProvideX User’s Guide V8.30 Back 345

Implementation of the XML Interface with your applications requires that the Xerces
XML Library as well as libraries pvxxml.dll (for Windows) and pvxxml.so (on
UNIX/Linux) are installed on your system. TCB(193) can be used to determine the
availability of XML support.

Defining the XML Interface
The DEF OBJECT directive is used to create a new instance of *XML; e.g.,

PREFIX

DEF OBJECT obj_id,"*XML"

The DELETE OBJECT is used to remove/disconnect the object:

DELETE OBJECT obj_id

Syntax Options
Once defined, the interface supports various options for accessing and manipulating
XML documents and content.

For syntax details and examples, refer to the *XML interface in the Language
Reference, p.760. See also DEF OBJECT in the Language Reference, p.70.

'CREATE Creates and opens an XML document with a given file
name and document root.

'OPEN Opens an XML document.
'SET_ELEMENT Sets the current element for reading and writing.
'READ_ELEMENT$ Sets the current element for reading and writing.
'NEXT_SIBLING Sets the current element to the next sibling.
'PREVIOUS_SIBLING Sets the current element to the previous sibling.
'READ_CHILDELEMENT$ Reads the value of the child element.
'BUILD Initializes output buffer for a new data block with the

specified parent tag as a child element of the current
element.

'ADD_CHILDELEMENT Add a new child element to the end of current element
block set in the output buffer.

'ADD_ATTRUBUTE Adds an attribute to the latest node, either created by
'BUILD or 'ADD_ CHILDELEMENT.

'COMMIT Commits the output buffer to the XML document
file/string.

'CLOSE Closes the XML document, cleans-up workspace and
releases any resources that are used.

10. Data Integration XML Content

ProvideX User’s Guide V8.30 Back 346

ProvideX User’s Guide V8.30 Back 347

User’s Guide 11
 Object-Oriented ProvideX

Object-Oriented Programming (OOP) is a development approach where applications
are composed entirely of reusable components that can act on each other. Unlike in
traditional structured programming, where functionality and information is kept
apart, object orientation merges both into a single indivisible entity called an object.
This concept provides greater flexibility and easier maintenance across large systems
and can make understanding and analyzing complex procedures much easier,
especially in a collaborative development environment.

ProvideX is equipped with all the language apparatus for designing, developing, and
implementing true object-oriented programs. Several ProvideX-supplied classes are
shipped with the ProvideX installation for use in your applications (each is documented
on the ProvideX website, www.pvx.com). The OLE Server can be used to invoke
ProvideX objects from external products. This chapter leads you through the
object-oriented programming elements in ProvideX.

Why use Object Oriented Programming?, p.347
General Concepts and Terminology, p.350
ProvideX OOP Interface, p.353
Putting It All Together, p.364

Why use Object Oriented Programming?
There are a number of excellent reasons for going object oriented. Objects make large
development projects simpler by breaking them down into smaller manageable
chunks. They may be re-used in other applications, which saves development time.
They can hide and protect critical data. They enforce modularity, which improves
code maintainability and promotes a true collaborative development environment.

Topics

11. Object-Oriented ProvideX Why use Object Oriented Programming?

ProvideX User’s Guide V8.30 Back 348

Consistency in Design and Code

In object orientation, each object is treated like a "black box". Developers don’t need
to know about what goes on inside an object to be able to use it. All they need is
access to the object via its object ID, which provides access to what the object does
but keeps the details hidden from outside. Once created, the object behaviour is
never modified. This is what maintains consistency throughout a project. Developers
should be confident that the object will always work as originally designed.

For example, if there is a Delete method for all objects that relate to data
information throughout the application design (Client, Vendor, Product, etc.),
then the programmer only ever has to remember to use Delete to remove these
items. The object itself determines if all conditions are met to allow for the removal.

Also, a common property (e.g., InActive) can be provided for consistent testing of
the different conditions of a Client versus a Vendor versus a Product. This
allows programmers to write generic object-related routines such as:

Function PurgeHistory(ObjId)
 ObjId’Start()
 while ObjId’GetNext()
 if ObjId’Inactive then ObjId’Delete()
 wend
return 1

This code would work with virtually all objects to purge inactive information from
the system — provided the object has Start, GetNext, and Delete functions and
an InActive property.

Data Protection

Certain data elements can be created that will be visible only while running within
the object. These are considered local or static elements — they are particularly
useful for maintaining critical information (internal reference pointers, etc.) that is
controlled solely by the object and is not directly accessible to outside code.

An example of this would be a field in a file that contains a linked list pointer. To
avoid the issue of programs accidentally corrupting the pointer, you could make this
data internal to the object only and declare it as local or static.

You may want some data elements (properties) to be accessible from outside the
object yet be able to control all access to them. Access to properties can be controlled
within the object. The object definition and logic decides which properties the user
can read and update. For example, a field that displays Salary could be restricted to
only those users who rightfully have access to the data.

This capability can also be used to make sure that data content is correct. For
example, a Date field could have update logic applied to it so that only valid dates
are placed into a file.

11. Object-Oriented ProvideX Why use Object Oriented Programming?

ProvideX User’s Guide V8.30 Back 349

Control and Separation of Code

Another underlying advantage that objects give us is the ability to re-use common
application code. Object orientation provides this advantage in two ways:

First, common object-related functionality can be developed — methods that take
advantage of the fact that an object is self-contained and need not concern
themselves with the object's particulars. For example, the PurgeHistory method
can be used on any object, provided the object has Start, GetNext, InActive, and
Delete properties/methods. This allows the code to be used in multiple places
within the application, reduces duplication, and minimizes the chance of
introducing errors.

Second, inheritance can be applied — objects that utilize code and concepts from
other objects. This further reduces code duplication, reduces errors, and makes for a
smaller and tighter application.

Objects themselves can be used as function libraries, which enables code to be
written once and used in numerous places within the system.

Access from Outside the Application

If you design objects that are fundamentally self-contained, they can also be used by
outside applications (via the ProvideX OLE Server). It is possible to create a
ProvideX object, then invoke it from other languages such as VB, VBScript, Delphi,
and C++. The ProvideX OLE Server allows virtually any object to be invoked by, and
directly interact with, outside application development environments. You can use
DCOM to invoke ProvideX objects remotely.

11. Object-Oriented ProvideX General Concepts and Terminology

ProvideX User’s Guide V8.30 Back 350

General Concepts and Terminology
To understand OOP is to understand its vocabulary. This section provides a quick
reference of all the standard object-oriented programming concepts and terminology.

Objects, p.350
Classes, p.350
Object Identifiers, p.351
Properties, p.351
Methods, p.351
Encapsulation, p.351
Inheritance, p.351
Aggregation, p.352
Collections, p.352
Polymorphism, p.352

Object

Objects OOP systems are modeled after real world things, or objects. In object-oriented
programming, objects are entities that consist of data, and the functionality that operates
on that data.

Analogy: A car is represented in a computer system as a Car object.

Classes A class defines an object. Each object belongs to only one class. Similar objects are
grouped by class. Because an object represents an instance of a class, the action of
creating the object is often called instantiating.

Analogy: A BlueFord has properties and methods defined in the Car class of
objects. The BlueFord object is an instance of Car created at runtime.

Clas s

Distinguishing Between an Object and a Class
It is essential to understand the difference between an object and a class. An object is
a unique instance of a particular type, whereas the class is that type; e.g.,

Question: Can any of the above objects be a class?
Tip: Try adding an "S" to the objects. Content is important.

Topics

Object Class

Bob’s Bank Account Bank Account

MIT School

Out of control car Car

Bank of Nova Scotia Bank

11. Object-Oriented ProvideX General Concepts and Terminology

ProvideX User’s Guide V8.30 Back 351

Object Identifiers
Object IdentifierThere can be many instances of a class running in the system; therefore, ProvideX

uses a numeric value to identify each object. An object identifier allows us to send a
message to a particular object. Applications cannot directly access any of the data, but
must go through the object identifier.

Analogy: BlueFord is represented by a numeric variable that points to an instance
of a Car object.

Properties Properties are the data held inside an object. The same properties will appear in
every object of a particular class, but the value of each property may be different.

Property

Analogy: The object identified as BlueFord has a property called Fuel_Level.
Every instance of Car will have a Fuel_Level property, but the value of
Fuel_Level may be unique to each instance.

Methods Methods are procedures held within an object. They define what actions each object
is able to perform.

Method

Analogy: The Car class has methods such as getFuelLevel or fillTank that
affect the state of the Fuel_Level property. It also has a method called Start that
contains all of the logic responsible for starting the engine.

Encapsulation

The properties of an object are not addressable from outside of the object. Only the
object's methods should be able to change its properties. The enforcement of this rule
is known as encapsulation. Encapsulation means a message can only access an
object's properties via the object's methods; the object's methods will validate all
incoming messages.

Inheritance This term describes how one class inherits elements from another class.

Analogy: Both the Car class and the MotorCycle class share common elements
(e.g., GasTank) which reside in a more general class called Vehicle. The specific
structure and behavior defined in a Car and MotorCycle are based on the elements
of a Vehicle.

Note: A class should only have properties/methods related to the intended objects;
e.g., a Car class would not have a Rudder property or DropAnchor method.

Warning: Do not break this rule.

11. Object-Oriented ProvideX General Concepts and Terminology

ProvideX User’s Guide V8.30 Back 352

Car and MotorCycle are called derived classes (a.k.a sub-classes or children). The
Vehicle class is referred to as a base class (a.k.a super class or parent). Each derived
class has properties and associations of its parent. Both Car and MotorCycle are a
"kind-of" Vehicle. The "kind-of" relationship is important. It means that, with
inheritance, restraint is placed on the type the object is an instance of.

Substitutability Principle
A derived class must be usable through the methods declared in the base class. At
anytime the derived class can be substituted for the base class. For example, if a
block of code expects to receive a reference to a Vehicle, and instead it receives a
reference to a Car, because Car is based on the elements of a Vehicle, the logic will
still execute as expected.

Tip: Delegation is an alternative to inheritance. Misuse of inheritance can reduce
reusability and complicate maintenance.

Aggregation An aggregate object is an object comprising several other objects, to which it delegates
responsibilities. An aggregate forwards messages to properties that are objects
known as delegates. Client objects sending messages to the aggregate are unaware
that multiple objects are working behind the scenes. An aggregate delegates
responsibilities like inheritance but without the "kind-of" restraints of inheritance.

Collections A collection is an object that groups multiple objects into a single unit. Collections
are used to store, retrieve, and transmit objects from one method to another. They
don't manipulate the objects, but simply store and retrieve their object identifiers.
Collections typically hold objects that form an expected group.

Analogy: A DealerShip object has a collection of Car objects, whereas a
ParkingLot has a collection of Vehicle objects.

ProvideX collection objects are *OBJ/COLLECTION and *OBJ/HASHCOLLECTION.

Polymorphism
Polymorphism is based on a Greek word meaning "many forms". In object-oriented
modeling, it refers to the ability of objects to respond to a particular message in a
manner appropriate to the object's class. Polymorphism is common among classes
that are derived from a common base class.

Analogy: All objects that are derived from the Vehicle class have a method called
Start. If a ParkingLot object were to cycle through its collection of Vehicle
objects to call each Start method, the Car objects will execute logic specific to cars,
and Motorcycle objects will execute logic specific to motorcycles, and so on.
Although the same message was sent to all Vehicle objects, each object responds
with a different Start method.

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 353

ProvideX OOP Interface
Specific OOP-related directives and functions have been added to the language for
the definition, creation, and deletion of classes and objects. The ProvideX
environment takes care of all of the housekeeping chores required for their
implementation.

Applications only have to request that a new instance of an object be created and
ProvideX will locate and load its definition. When the object is no longer needed, the
object and all its properties are released. Class definitions are handled similarly.
Unless specifically defined, ProvideX will dynamically load the definition of an
object class and maintain it in memory until there are no references to it (either by an
object or another class inheriting it).

ProvideX enlists the use of several OOP-related syntax elements.

OOP Syntax Elements, p.355
DEF CLASS, p.356
PROPERTY, p.357
LOCAL, p.358
FUNCTION, p.358
LIKE, p.360
PROGRAM, p.360
PRECISION, p.361
LOAD CLASS, p.361
DROP CLASS, p.361
RENAME CLASS, p.362
STATIC, p.362
NEW(), p.362
REF(), p.363
DROP OBJECT, p.363
OPEN OBJECT, p.363

Overview Following is a brief discussion of ProvideX OOP mechanisms. Specific syntax is
provided later. For a collection of sample objects (illustrating the various
mechanisms available) refer to the section Putting It All Together, p.364.

Classes and Objects
Object-oriented programming in ProvideX begins with the definition of classes. Each
class provides the name given to an object definition (such as Company, Customer,
or Supplier) as well as access to the object’s properties and methods. Classes are
saved in the form of a class.pvc program file and can include:

• Property definitions (both hidden and exposed)
• Method definitions
• References to other objects whose characteristics are to be inherited
• References to programs and related logic that supports the object.

Topics

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 354

A class definition begins with a DEF CLASS directive followed immediately by the
object description (comprising various ProvideX OOP-related directives). An END
DEF directive is used to mark the end of the definition. The DEF CLASS statement
must appear at the beginning of the .pvc program file.

Several OOP-related directives are available for use in a class definition construct:
Clas s Definition Construct

0010 DEF CLASS "class$" ...
0020 PROPERTY prop1, prop2, ...
0030 LOCAL prop1, prop2, ...
0040 FUNCTION method (param) "
0050 LIKE "otherclass", ...
0060 PROGRAM "interface_prog"
0070 PRECISION nnn FOR OBJECT
0080 END DEF

Creating/Accessing an Object
ProvideX has a built-in feature that simplifies the loading and unloading of classes.
Once an object class has been defined, it can then be used to create objects via the
NEW() function. Whenever a class is referenced by NEW(), and the class is not
already defined in the system, the system will automatically load the class definition
from the .pvc file. The LOAD CLASS directive can also be used to auto-load a class
definition from a file. This definition remains in memory until no references
(handles) to it exist - at which point the system automatically deletes the class
definition. Definitions are also deleted using the DROP CLASS directive, or when a
START directive is issued.

NEW() loads the class definition (if necessary), instantiates the object, and creates a
logical handle to the object. Because the system automatically tracks the number of open
handles to each class, an application can have multiple references to the same class; and,
as long as they always have a corresponding DROP OBJECT for each NEW(), the system
will keep track of the loading and unloading of class definitions. The REF() function
can also be used to monitor and control access to objects by controlling the reference
count. All objects are destroyed automatically when a START directive is issued.

Using Methods and Properties
Apostrophe

The properties and methods defined in an object are accessible to a program via the
apostrophe operator (’ tick), using the format:

obj_id'method[$](args)
obj_id'property[$]

The syntax ‘* (tick asterisk) can be used to return a comma-separated list of all the
methods and properties within an object.

When referencing a method, a $ dollar sign means that the method will return a string –
otherwise, a numeric value would be returned. Methods that end in % are assumed to
return an integer. Methods usually return values, but sometimes they are used to
perform logic that returns a simple indication of success or failure; e.g., 1or 0.

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 355

Properties are referenced via the apostrophe operator in the same manner as for
methods. However, when executing within an object, all object properties become
simple ProvideX variables (as far as the application logic is concerned). An object’s
properties and their values are preserved for as long as the object exists (similar to the
way global variables are preserved throughout the life of a ProvideX session).

_ObjTo reference properties and methods within the object that you are currently
executing (e.g., PayRate) use the _Obj prefix (_Obj'PayRate). This prefix is a
system-supplied variable containing the current object identifier.

During the execution of program logic, direct property manipulation will not invoke
any PROPERTY GET/SET logic (e.g., PayRate=n); however, if you refer to a
property using its object identifier (_Obj'PayRate=n), the system will invoke the
GET/SET logic.

OOP Syntax Elements
Following is a descriptive list of all the directives and functions used in the
implementation of ProvideX object-oriented mechanisms:

System-supplied variables available while executing code on behalf of an object:

Note: A significant number of sample objects are provided in the section Putting It
All Together, p.364.

DEF CLASS Defines the object class.
PROPERTY Declares data/properties for the object.
LOCAL Declares internal data/properties for the object.
FUNCTION Declares functions or methods for the object.
LIKE Specifies other objects that this object inherits from.
PROGRAM Defines the default program that contains the object logic.
PRECISION Sets default program precision for use within the object.
LOAD CLASS Pre-loads a class definition into memory from a .pvc file.
DROP CLASS Deletes class definition and all related information.
RENAME CLASS Change name of an existing class.
STATIC Dynamically declares LOCAL variables.
NEW() Creates an object instance.
REF() Controls reference counts.
DROP OBJECT Deletes an object.
OPEN OBJECT Opens a file for exclusive use in an object.
END DEF Marks conclusion of object class definition.

_Obj Identifies internal object identifier of current object
_Class$ Contains the name of the class for current object
_Refcnt Contains the reference count for this class of object.

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 356

DEF CLASS Directive
D EF CLA SS

DEF CLASS class$ [UNIQUE][CREATE label [REQUIRED]][DELETE label[REQUIRED]]

The ProvideX DEF CLASS directive is used to declare the start of a Class Definition
Construct, p.354. It provides the name of the object (class$) and it can be used to
override object creation and deletion logic. Class names are case insensitive and
forward/backward slashes are considered equivalent. Duplicate names are not
allowed within the system. A definition closes with the END DEF directive.

END D EF

On Create/On Delete Logic
Sometimes it may be necessary to perform initialization (or cleanup) routines when
the object is created or destroyed. Initialization logic can be used to establish default
values for properties, open files that the object may need, validate security, etc.
Cleanup logic should be used to close files and release system resources (such as
other objects) whenever an object is dropped.

By default, ProvideX executes a call to the label ON_CREATE within an object
definition whenever an object is created. This logic can open files, initialize variables,
and process additional parameters passed in the NEW() function call. When an
object is deleted from the system, ProvideX executes a call to the label ON_DELETE.

Default label names can be overridden via the DEF CLASS options CREATE label and
DELETE label. If there is no CREATE or DELETE declaration, ProvideX executes the
default ON_CREATE/ON_DELETE in the primary class definition file only. The
creation/delete entries of inherited classes are not executed unless the
CREATE/DELETE options specify the REQUIRED clause. If an object inherits another
object that has creation logic, the creation logic for the inherited object is performed
first. Deletion logic is performed in the opposite order.

UNIQUE Option
For many applications it may be desirable to limit an object to a single instance in
memory. For example, an object that is essentially a subroutine library — only one
instance of this library is necessary.

The UNIQUE option for the DEF CLASS directive forces a single instance of an object
in memory. Any object declared as UNIQUE will have a single instance created, and
any subsequent attempt to create an instance will simply return the same object
identifier and increment the object reference count by one; e.g.,

DEF CLASS "WindowsAPI" UNIQUE ON_CREATE REQUIRED ,,,

This allows programs to logically create the object then drop the object when done.
The UNIQUE clause guarantees only a single instance of the object will ever exist.

Note: To avoid syntax/logic errors, it is recommended that your create/on delete
logic be placed outside of the DEF CLASS .. END DEF block.

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 357

Another use of a unique object could be a session or application control object that
could have information such as the company codes, user information, operating
date, etc. By declaring this object as unique, only one instance will ever be created
and any application can access it.

PROPERTY Directive
PROPERTY

PROPERTY prop1 [OBJECT] [GET label|ERR] [SET label|ERR], prop2 ..

The PROPERTY directive is used within a DEF CLASS .. END DEF block to declare an
object’s properties (data). These properties can be treated like any other variable and
are accessible using the Apostrophe operator. To define properties for an object class
that are not to be exposed to external applications, refer to the LOCAL directive.

If the property contains an object identifier to another object, specify the keyword
OBJECT after the property name. When the object is deleted, ProvideX will use the
REF() function against the object identifier to remove it (as long as it has no other
references); e.g.,

DEF CLASS "Customer"
PROPERTY File OBJECT

When you delete an object whose class is Customer, then the system reduces the
reference count of the object whose identifier is in File and, if it is no longer being
referenced, deletes it as well.

You can also specify logic to be called automatically whenever a property is read or
written. This capability allows the application designer to control how the
underlying application will view and update any of the object properties.

On Read Logic
A property name prop can be followed by a GET label to define the location of the
logic to call whenever the property is read in the application. With a GET in place,
the specified logic issues a RETURN value which returns the actual value of the
property to the application; e.g.,

PROPERTY ExtendedAmount GET Extension
...
Extension:
RETURN Quantity * Price

If the logic resides outside of the defining program, then the name of the program
and entry point is provided in quotes instead. If the logic required to do a read is
simply a formula, then it can be inserted directly into the PROPERTY definition
clause using an equal sign instead; e.g,

PROPERTY ExtendedAmount = Quantity * Price

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 358

On Write Logic
To intercept all of the property updates, you can specify SET label. With a SET in
place, the system calls the logic whenever the property is being updated and passes
it the value being set. Like the GET option, an external program/entry point can be
provided; e.g.,

PROPERTY Quantity SET "Invline;ChgQty"

Where Invline contains:

2000 ChgQty:\
2010 ENTER NewQty
2020 IF NewQty = Quantity then RETURN
2030 ! .. Update inventory...then RETURN

If the logic is within the defining program, then you would simply specify the
statement label; e.g.,

PROPERTY Quantity SET ChgQty

Blocking GET/SET
To prevent a user from being able to GET or SET a property, specify the keyword ERR
following the GET/SET declaration; e.g.,

PROPERTY ExtendedAmount GET Extension SET ERR

The SET ERR after this property makes it read-only. An error exit within the GET/SET
causes an error to be returned to the application.

LOCAL Directive
LOCA L

LOCAL prop1 [OBJECT], prop2 [OBJECT] ...

To create a private property, use the LOCAL directive within the class definition
instead of the PROPERTY directive. Properties that are declared LOCAL are not
visible to applications outside of the execution of the object itself, nor are they
available to be read or updated.

Other typical uses of LOCAL properties would include values such as file numbers,
status flags, handles to subordinate object libraries, confidential information (such as
security codes/passwords), as well as other types of information that you do not
want applications outside of the object to access.

FUNCTION Directive
FUNCTION

FUNCTION [PERFORM] [LOCAL] method(args) logic [FUNCTION END]

A method (function) is declared via the FUNCTION directive within the DEF CLASS ..
END DEF block. Every method declaration needs to have associated logic that will be
called when it is invoked. If arguments (args) are used, then the type and number
must match parameters that the application code provides. Parentheses are part of
the method name (whether or not arguments are used).

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 359

PERFORM indicates that the logic is to be loaded and executed (as in a PERFORM
directive); therefore, all variables will be shared with the calling program. While this
does have some uses, it clearly violates the rules of Encapsulation, p.351. LOCAL
indicates that the method is only to be called internally from within the object. It
cannot be called externally.

Statement Label or In-Line Logic
A statement label is normally used to access logic defined as a procedure outside the
DEF CLASS .. END DEF block; e.g.,

0060 FUNCTION Find(X$) LookupCust
...
0120 END DEF
...
0210 LookupCust:
0220 ENTER Cst_id$
... ! Logic to find the client
0240 RETURN sts ! Return value indicates success

However, the logic can also appear directly following the FUNCTION directive; e.g.,

0060 FUNCTION Find(X$)
0070 ENTER Cst_id$
... ! Logic to find the client
0090 RETURN sts ! Return value indicates success
0100 FUNCTION END
...
0170 END DEF

In which case, the method declaration should close with a FUNCTION END clause.
However, the logic ends automatically with the start of the next method declaration
or END DEF (whichever comes first).

Return Value
Each method should return a value. The value can take the form of a string or
numeric value depending on the name associated to the method (strings must end
with $). If no RETURN value is specified, then the system will return a value of zero
for numeric methods and " " (null) for string methods.

Naming Conventions
Multiple definitions of the same method name can be specified, as long as each
method has different args. In order to determine which method to actually use,
ProvideX attempts to match up the arguments specified with the lists provided in
the application; e.g.,

In the class definition:

FUNCTION Find(X$) LookupByName
FUNCTION Find(X) LookupByNumber

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 360

...
LookupByName:
ENTER Cst_id$
... ! Logic to find the client by name
RETURN ...
LookupByNumber:
ENTER Cst_id
... ! Logic to find the client by number
RETURN ...

In the application:

Cst’Find("ABCD") This calls LookupByName
Cst’Find(1234) This calls LookupByNumber

LIKE Directive
LIKE

LIKE "otherclass", "otherclass", ...

Multiple classes can be included in the definition of a single class. This can be
accomplished using the LIKE directive within a DEF CLASS .. END DEF block to
inherit the properties from one or more other classes.

For example, you might want to create a generic class that includes the contents of a
number of different independent smaller classes (one for security, one to handle
dates, etc.). Rather than merge the definitions, LIKE allows you to keep them
separate. Not only does this simplify maintenance, but the independent classes may
then be shared with other applications.

Example:

DEF CLASS "MyAppl"
LIKE ""DateUtil","Security"
END DEF

When a handle to MyAppl is created, it can be used to access all the methods
contained within DateUtil and Security.

When multiple occurrences of the same property/method are found within the
inheritance, the first class declared in the LIKE directive takes precedence. This can be
overridden by specifying the class using a FROM clause in the method arguments;
e.g., x’AddItem(FROM "myClass",Item$).

PROGRAM Directive
PROGRAM

PROGRAM "interface_prog"

The PROGRAM directive is used within a DEF CLASS .. END DEF block to define the
default program name that is going to service a class of object. Entry points can
process methods and read/write properties.

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 361

The following optional entry point labels are supported:

ON_CREATE called when the object is created.

ON_DELETE called when the object is deleted.

No error will be reported if the label does not exist. Any references to program logic
in a property read/write or a method definition can contain a leading semi-colon.
For example, the following class definitions are effectively the same:

PROGRAM "Cust"
FUNCTION Find(X$) ";LookupByName"
or
FUNCTION Find(X$) "Cust;LookupByName"

PRECISION Directive
FOR OBJ ECTPRECISION

PRECISION num FOR OBJECT

By default, an object will inherit the default system precision (normally 2, but based
on the 'PD' system parameter). By indicating PRECISION num FOR OBJECT within a
DEF CLASS .. END DEF block, you can set pre-defined precision for all subsequent
method invocations within the current object instance. However, an object’s
precision may be overridden within method logic where it specifically declares a
PRECISION to use (preserving encapsulation).

LOAD CLASS Directive
LOA D CLA SS

LOAD CLASS class$

The LOAD CLASS directive may be used to pre-load a class definition into memory
from a .pvc file; e.g., LOAD CLASS "aaa" loads from aaa.pvc. The first code in
the .pvc file must be a DEF CLASS .. END DEF block assigned the same name (class$)
as specified in the LOAD CLASS directive.

DROP CLASS Directive
DROP CLA SS

DROP CLASS class$

Once a class definition is established, it may not be changed but it can be deleted
using the DROP CLASS directive. This would allow the class to be redefined.
Deletion is only possible if no objects exist for that class. Any attempt to delete a
class that has a reference to it will return an Error #50: "Class in use or
already defined." The DELETE CLASS and DROP CLASS directives may be
used interchangeably for this purpose.

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 362

RENAME CLASS Directive
RENAME CLA SS

RENAME CLASS old_name$ TO new_name

The RENAME CLASS directive is used to alter the name of a previously-defined
class. This functionality allows the application designer to alter an existing object
class easily, without having to change programs; e.g., RENAME CLASS "xxx" TO
"yyy" would auto-load the new class name yyy from the file xxx.pvc (if the
definition does not already exist).

STATIC Directive
STATIC

STATIC varlist

The STATIC directive is used to declare that all the variables specified (varlist) are to be
added to the list of variables maintained within the object — in effect, adding the
variables to the LOCAL list at runtime. This allows the object to read a record from the
file and have the data elements remain available for subsequent calls to the object's
methods. All elements of an arrary are defined as static by specifying the simple array
name in the statement; e.g., STATIC A$ sets all elements of the A$ array as static.
Static variables only take effect on references that follow the STATIC declaration.

NEW() Function
NEW()

NEW(class$)

The NEW() function is used to create a reference to, or instance of, an object based on
a specified class name (class$). If the class name already exists, then its definition is
used. If the class has not been defined previously, the system attempts to load the
program class$.pvc and execute/define the DEF CLASS within it.

For example, Comp=NEW("Company") would create a new instance of a Company
class. If the class definition for Company does not already exist in memory, then the
system attempts to load the program Company.pvc. If this is successful, the NEW()
function will return the object identifier assigned to the object.

If the label ON_CREATE exists in the class definition, it will be called to perform
initialization logic. You can pass parameters to the NEW() function following the class
name as well. These parameters will be passed to the ON_CREATE entry point; e.g.,

C = NEW("Customer", File_number)

In Customer.pvx:

0010 ON_CREATE: ENTER File_no

For more information, see On Create/On Delete Logic, p.356.

Reference Count
Internally, each instance of an object sets a hidden reference count property, which is
used for handling multiple access to the same object by different aspects of an
application. Logically, when an object instance is first created, its reference count is

11. Object-Oriented ProvideX ProvideX OOP Interface

ProvideX User’s Guide V8.30 Back 363

set to 1 (one). When an object is dropped, the system reduces the reference count by 1
(one). Once the count goes to 0 (zero), the object and all its contents are discarded.
This reference count (number of instances) may be increased/decreased using the
REF() function (see below).

REF() Function
REF()

REF({ADD|DROP} obj_id)

The REF() function can be used to monitor and control multiple instances of a
specified object via its internal Reference Count, p.362:

Basically, when accessing an object, use REF(ADD obj_id) to indicate that the
application is to use the object (and to increment the reference count). When
finished, use REF(DROP obj_id) (to decrement the reference count). When no other
references exist, the object is automatically deleted.

Only when an object reference count goes to 0 does the system actually delete the
object and all its properties. ON_DELETE logic is only executed at the point when the
object reference count goes to zero (see On Create/On Delete Logic, p.356). The
DROP OBJECT may be used as another method for deleting an object.

All objects are destroyed automatically when the application issues a START
directive or if the END directive is entered at command mode.

DROP OBJECT Directive
DROP OBJ ECT

DROP OBJECT obj_id

The DROP OBJECT directive is used to delete an object and its properties (if the
reference count is 1). This directive has the same effect as using REF(DROP obj_id) to
decrement the reference count from 1 to 0. The DELETE OBJECT and DROP OBJECT
directives may be used interchangeably for this purpose.

OPEN OBJECT Directive
OPEN OBJ ECT

OPEN OBJECT (chan[,fileopt])string$

Use the OBJECT keyword in an OPEN statement to open a file for exclusive use within
an object. This ensures that only logic executing inside the object that executed the OPEN
can change the status of the specified file. This denies any READ, WRITE, REMOVE,
CLOSE, or other directive that the application attempts to make from outside the object.
External attempts to alter the state of the specified file returns Error #13: File
access mode invalid. The file will be closed automatically when the object is
deleted, or if there is an explicit CLOSE (chan) from within the object.

REF(obj_id) Returns the current reference count for the specified obj_id.
REF(ADD obj_id) Increments the reference count for the specified obj_id.
REF(DROP obj_id) Decrements the reference count for the specified obj_id.

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 364

Putting It All Together
This section describes the creation and implementation of three objects in ProvideX
(Company, Customer, Supplier) to illustrate the OOP syntax described earlier under
ProvideX OOP Interface, p.353.

Company Class, p.364
Customer Class, p.366
Supplier Class, p.367
Additional Classes, p.368

Company Class
Company

The contents of the company.pvc class definition file appears as follows:

0010 DEF CLASS "Company"
0020 PROPERTY Name$,Address$,City$,PhoneNumber$,FaxNumber$
0030 FUNCTION Add()Add
0040 FUNCTION Delete()Delete
0050 FUNCTION Fax()Fax
0060 FUNCTION ShowSpecial()";ShowSpecial"
0070 END DEF
0100 ! ^100
0110 On_Create:; GOSUB Where_are_we; RETURN 1
0120 On_Delete:; GOSUB Where_are_we; RETURN 1
0200 ! ^100
0210 Add:; GOSUB Where_are_we; RETURN 1
0220 Delete:; GOSUB Where_are_we; RETURN 1
0230 Edit:; GOSUB Where_are_we; RETURN 1
0240 Find:; GOSUB Where_are_we; RETURN 1
0250 Fax:; GOSUB Where_are_we; RETURN 1
0300 ! ^100
0310 ShowSpecial:
0320 X$="Special Variables that exist in every Object:"+SEP
0330 X$+=$09$+"_OBJ = "+STR(_OBJ)+SEP+09
0340 X$+="_CLASS$ = "+_CLASS$+SEP+$09$
0350 X$+="_REFCNT = "+STR(_REFCNT)+SEP
0360 MSGBOX X$,"In the Company "+FNLabelName$+" logic"
0370 RETURN 1
0400 ! ^100
0410 Where_are_we:
0420 MSGBOX "In the Company "+FNLabelName$+" logic","FYI"
0430 RETURN
8000 ! 8000
8010 def fnLabelName$=mid(pgm(-3),pos(";"=pgm(-3)+";")+1)

Topics

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 365

The definition of this class starts with the DEF CLASS directive on statement 0010
and concludes with the END DEF directive on statement 0070. All of the fields
(Properties) of the object are declared by the PROPERTY directive on statement 0020.
The Methods available are defined using the FUNCTION directive on statements
0030 through 0060.

Creating a reference to, or instantiating the class in an application is accomplished
using the NEW() function; i.e., Comp=NEW("Company"). The numeric variable
Comp contains a reference to the object known as an Object Identifier. All
interaction with the object takes place using this object identifier.

Creating a new object automatically executes the logic that follows the statement
label called On_Create in the program associated with the object. This label is
optional and will not generate an error if it does not exist.

Determining what properties and methods are available for a given object is
accomplished using the Apostrophe operator (' tick) followed by an * asterisk.

Example:

print Comp'* ! Show all Properties & Methods
! Produces the following results:
FaxNumber$,PhoneNumber$,City$,Address$,Name$,ShowSpecial(),Fax(),
Delete(),Add(),

The properties are listed as simple string or numeric variable names while the
available methods end with a pair of parentheses “()”.

Methods are called by specifying the object identifier and the Apostrophe operator
followed by the method name. As methods are designed to return a status value,
they must appear on the right side of a LET assignment or be used with a directive
such as a PRINT.

Example:

print Comp'ShowSpecial()
! Displays the following status value
 1

This produces a message box that lists all of the special variables that are available
while executing code on behalf of an object; i.e., _Obj, _Class$, and _Refcnt.

After acknowledging the message box, a value of 1 (one) appears on the next line.
This value represents the status returned by the method when it executes the
RETURN 1 on statement 0370. A non-zero status value usually indicates that a
method is successful, while a value of zero signifies that it is not. (Although, this is at
the discretion of the programmer.)

Objects must be dropped or deleted when the application is finished with them. This
is accomplished using DROP OBJECT or REF() techniques; e.g.,

DROP OBJECT obj_id
VARIABLE = REF(DROP obj_id)

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 366

The following example removes the Company object just created:

Drop Object Comp

Removing an object results in the On_Delete statement label being executed (if it
exists). In the Company object example, a message box will appear that indicates
"In the Company On_Delete logic".

Customer Class
Customer

The contents of the customer.pvc class definition file appears as follows:

0010 DEF CLASS "Customer"
0020 LIKE "Company"
0030 PROPERTY Limit,LastInvDate$
0040 FUNCTION Invoice()";Invoice"
0050 FUNCTION Edit()";Edit"
0060 END DEF
0100 ! ^100
0110 On_Create:; GOSUB Where_are_we; RETURN 1
0120 On_Delete:; GOSUB Where_are_we; RETURN 1
0200 ! ^100
0210 Invoice:; GOSUB Where_are_we; RETURN 1
0220 Edit:; GOSUB Where_are_we; RETURN 1
0300 ! ^100
0310 Where_are_we:
0320 MSGBOX "In the Customer "+FNLabelName$+" logic","FYI"
0330 RETURN
8000 ! 8000
8010 def fnlabelname$=mid(pgm(-3),pos(";"=pgm(-3)+";")+1)

This class definition introduces the Inheritance aspect of object oriented
programming by its use of the LIKE directive on line 0020. LIKE is used to include all
of the characteristics from a different object into the current object. Creating an object
using this class definition and viewing all of its properties and methods best
illustrates this.

Example:

Cust=NEW("Customer")
print Cust'*
! Produces the following results:
LastInvDate$,Limit,Edit(),Invoice(),FaxNumber$,PhoneNumber$,
City$,Address$,Name$,ShowSpecial(),Fax(),Delete(),Add(),

The Customer class explicitly defines the LastInvDate$ and Limit properties
and the Invoice() and Edit() methods. The remaining properties (City$,
Address$, etc.) and methods (ShowSpecial(), Fax(), etc.) are inherited from
the Company class. This allows classes that are related by inheritance to share

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 367

common properties and methods without having to duplicate any of the
programming code normally required. Having the code in a single location helps to
reduce the amount of time spent on maintenance and enhancements.

The Where_are_we subroutine used in both the Company and Customer classes
could be converted to a method, which would allow both to share the same code. To
simplify the examples, this approach is not taken.

From an application standpoint, there is no difference between accessing a method
defined in the base class or one that is inherited.

Example:

Status = Cust'Fax()

Although the Customer class does not have a Fax() method, it is available since it
is inherited from the Company class. Remember to delete the instance of Customer
(Cust object) when finished:

Drop Object Cust

Supplier Class
Supplier

The supplier.pvc class definition file appears as follows:

0010 def class "Supplier"
0020 like "Company"
0030 property MinOrder,LeadTime
0040 function Order()";Order"
0050 function Edit()";Edit"
0060 end def
0100 ! ^100
0110 On_Create:; gosub Where_are_we; return 1
0120 On_Delete:; gosub Where_are_we; return 1
0200 ! ^100
0210 Order:; gosub Where_are_we; return 1
0220 Edit:; gosub Where_are_we; return 1
0300 ! ^100
0310 Where_are_we:
0320 msgbox "In the Supplier "+fnLabelName$+" logic","FYI"
0330 return
8000 ! 8000
8010 def fnLabelName$=mid(pgm(-3),pos(";"=pgm(-3)+";")+1)

The basic concepts illustrated with the Customer class also apply to Supplier.

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 368

Additional Classes

This section makes a few changes to the Customer class discussed earlier. Each of
these samples will introduce some additional features of ProvideX OOP syntax:
Cust2, Cust3, Cust4, Cust5, and Cust6.

A simple data file called cstfile is used in these classes. The following tables
outline the required information to create this file.

Field definitions:

Key definitions:

For the final two sample objects, a NOMADS File Maintenance panel for the
Customer file (Cstupd) is assumed.

Cust2 Class
Cust2

The contents of the Cust2.pvc class definition file illustrates the ability to associate
program logic with a property when an attempt is made to alter its contents.

00010 DEF CLASS "Cust2"
00020 PROPERTY Cust_No$ SET Change_Cust
00030 PROPERTY Name$,Addr$,City$,Salesrep$
00040 PROPERTY Amt_Owing SET ERR
00050 FUNCTION Find(X$)Get_Customer
00060 FUNCTION Next()Read_Next
00070 FUNCTION Update()Update_Customer
00080 END DEF
00100 ! !^100
00110 On_Create:

Field Name Description Type Len Delimited?

Cust_No$ Customer ID String 6 Yes

Name$ Customer Name String 30 Yes

Addr$ Address String 30 Yes

City$ City String 30 Yes

Salesrep$ Sales Rep String 3 Yes

Amt_Owing Amount Owing Numeric 10.2 Yes

Key # Description Fields

0 Primary Key Cust_No$

1 Sort by Name Cust_Name$ + Cust_No$

2 Sort by Sales Rep Salesrep$ + Cust_No$

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 369

00120 IF %Customer_File=0 \
 THEN OPEN (GFN,IOL=*)"cstfile";
 %Customer_File=LFO
00130 %Customer_Object++
00140 RETURN
00200 ! !^100
00210 Get_Customer: \
 ENTER C$
00220 READ (%Customer_File,KEY=C$) ! Loads all the variables
00230 RETURN 1
00300 ! !^100
00310 Change_Cust: \
 ENTER C$
00320 READ DATA FROM "" TO IOL=IOL(%Customer_File)
00330 Cust_No$=C$
00340 READ (%Customer_File,KEY=C$,DOM=*END)
00350 RETURN
00400 ! !^100
00410 Read_Next:
00420 READ (%Customer_File,END=*NEXT);
 RETURN 1
00430 RETURN 0
00500 ! !^100
00510 Update_Customer:
00520 WRITE (%Customer_File)
00530 RETURN 1
00600 ! !^100
00610 On_Delete:
00620 IF --%Customer_Object<>0 \
 THEN RETURN
00630 CLOSE (%Customer_File);
 %Customer_File=0
00640 RETURN

A PROPERTY definition can include an optional keyword SET followed by either a
line label or the keyword ERR. In the case of a line label, the program logic starting at
that label is executed when an attempt is made to alter the contents of the property.
The keyword ERR is used to prevent the contents of a property from being changed
and an error is returned to the program attempting to do so. By default, an Error
#88: Invalid/unknown property name is returned. However, this can be
overridden as shown in a subsequent sample class.

These options are used on the following property declarations:

0020 property Cust_No$ set Change_Cust
0040 property Amt_Owing set err

To illustrate use of this class, create a new instance of Cust2:

->Cust2=NEW("Cust2")

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 370

Auto-execute the Change_Cust method by setting the Cust_No$ variable. Use
Settrace/Endtrace to show the code executing:

->SETTRACE
->Cust2'Cust_No$="000011"
0310 Change_Cust: ENTER C$
0320 READ DATA FROM "" TO IOL=IOL(%Customer_File)
0330 LET Cust_No$=C$
0340 READ (%Customer_File,KEY=C$,DOM=*END)
0350 RETURN
->ENDTRACE

If you try to change the Amt_Owing property, this results in an Error #88 due to
the SET ERR clause on the property definition:

->Cust2'Amt_Owing=100
Error #88: Invalid/unknown property name

Drop the object when finished:

->DROP OBJECT Cust2

Cust3 Class
Cust3

This class illustrates a better approach for handling Encapsulation – by replacing
the global variables with local variables. It also introduces the ability to associate
program logic when reading the contents of a property. The contents of the
cust3.pvc class definition file appears as follows:

00010 DEF CLASS "Cust3"
00020 LOCAL Customer_File,Customer_Object
00030 PROPERTY Cust_No$ SET Change_Cust
00040 PROPERTY Name$,Addr$,City$,Salesrep$
00050 PROPERTY Amt_Owing GET ";CheckSecurity" SET ERR
00060 FUNCTION Find(X$)Get_Customer
00070 FUNCTION Next()Read_Next
00080 FUNCTION Update()Update_Customer
00090 END DEF
00100 !
00200 ! ^100
00210 On_Create:
00220 IF Customer_File=0 \
 THEN OPEN (GFN,IOL=*)"cstfile";
 Customer_File=LFO
00230 Customer_Object++
00240 RETURN

Note: One key issue regarding Cust2 is the use of global variables, which results in a
violation of the principle of Encapsulation, p.351. ProvideX itself has no mechanism
to enforce OOP "rules". Cust3 (below) shows a way to avoid this problem.

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 371

00300 ! ^100
00310 Get_Customer: \
 ENTER C$
00320 READ (Customer_File,KEY=C$) ! Loads all the variables
00330 RETURN 1
00500 ! ^100
00510 Change_Cust: \
 ENTER C$
00520 READ DATA FROM "" TO IOL=IOL(Customer_File)
00530 Cust_No$=C$
00540 READ (Customer_File,KEY=C$,DOM=*END)
00550 RETURN
00600 ! ^100
00610 Read_Next:
00620 READ (Customer_File,END=*NEXT);
 RETURN 1
00630 RETURN 0
00700 ! ^100
00710 Update_Customer:
00720 WRITE (Customer_File)
00730 RETURN 1
00800 ! ^100
00810 CheckSecurity:
00820 IF %Security_OK \
 THEN RETURN Amt_Owing \
 ELSE EXIT 52
00900 ! ^100
00910 On_Delete:
00920 IF --Customer_Object<>0 \
 THEN RETURN
00930 CLOSE (Customer_File);
 Customer_File=0
00940 RETURN

Cust3 replaces the global variables %Customer_File and %Customer_Object
with properties that are local to the object. This is accomplished with the use of the
LOCAL directive; i.e.,

0020 LOCAL Customer_File,Customer_Object

Properties declared LOCAL are available when executing logic on behalf of an object,
yet they are invisible to the outside world.

While Cust2 demonstrated the ability to intercept any attempt made to change a
value, Cust3 introduces the syntax required to intercept any attempts made to read a
property. This is accomplished by adding the keyword GET to the PROPERTY
definition; i.e.,

0050 property Amt_Owing get ";CheckSecurity" set err

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 372

The CheckSecurity() method in Cust3 is designed to return the value of the
Amt_Owing property if a global variable, %Security_OK is set to a non-zero value.
Otherwise, it returns an Error #52: Program is password protected; e.g.,

To illustrate use of this class, create a new instance of Cust3:

->Cust3=NEW("Cust3")

Get the next customer on file with the Next() method:

->x=Cust3'Next()

Disable the security override flag:

->%Security_OK=0

An attempt made to query the Amt_Owing property will result in an Error #52
due to the EXIT 52 on statement 0820:

->PRINT Cust3'Amt_Owing
Error #52: Program is password protected

Enable the security override flag:

->%Security_OK=1

Display the Amt_Owing property after enabling SETTRACE and ENDTRACE to show
the code executing:

->SETTRACE
->PRINT Cust3'Amt_Owing
0810 CheckSecurity:
0820 IF %Security_OK THEN RETURN Amt_Owing ELSE EXIT 52
 0
->ENDTRACE

Drop the object when finished:

DROP OBJECT Cust3

Cust4 Class
Cust4

This class introduces the concept of method overloading, which is the ability to
reference a method with a varying number and/or type of parameters. This
technique simplifies the external interface to the object by having a single method
name. One example of this would be the ability to find a customer using either a
string or numeric value. The contents of the cust4.pvc class definition file
appears as follows:

00010 DEF CLASS "Cust4"
00020 LOCAL Customer_File,Customer_Object
00030 PROPERTY Cust_No$ SET Change_Cust
00040 PROPERTY Name$,Addr$,City$,Salesrep$
00050 PROPERTY Amt_Owing GET ";CheckSecurity" SET ERR

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 373

00060 FUNCTION Find(X$)Get_Customer
00070 FUNCTION Find(X)Get_Customer_Numeric
00080 FUNCTION Next()Read_Next
00090 FUNCTION Update()Update_Customer
00100 END DEF
00200 ! ^100
00210 On_Create:
00220 IF Customer_File=0 \
 THEN OPEN (GFN,IOL=*)"cstfile";
 Customer_File=LFO
00230 Customer_Object++
00240 RETURN
00300 ! ^100
00310 Get_Customer: \
 ENTER C$
00320 READ (Customer_File,KEY=C$) ! Loads all the variables
00330 RETURN 1
00400 ! ^100
00410 Get_Customer_Numeric: \
 ENTER C
00420 C$=STR(C:"000000",ERR=*NEXT)
00430 C$=PAD(UCS(C$),6)
00440 READ (Customer_File,KEY=C$) ! Loads all the variables
00450 RETURN 1
00500 ! ^100
00510 Change_Cust: \
 ENTER C$
00520 READ DATA FROM "" TO IOL=IOL(Customer_File)
00530 Cust_No$=C$
00540 READ (Customer_File,KEY=C$,DOM=*END)
00550 RETURN
00600 ! ^100
00610 Read_Next:
00620 READ (Customer_File,END=*NEXT);
 RETURN 1
00630 RETURN 0
00700 ! ^100
00710 Update_Customer:
00720 WRITE (Customer_File)
00730 RETURN 1
00800 ! ^100
00810 CheckSecurity:
00820 IF %Security_OK \
 THEN RETURN 1 \
 ELSE EXIT 52
00900 ! ^100
00910 On_Delete:

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 374

00920 IF --Customer_Object<>0 \
 THEN RETURN
00930 CLOSE (Customer_File);
 Customer_File=0
00940 RETURN

Notice that FUNCTION statements for the Find() method appear twice; i.e.,

0060 FUNCTION Find(X$)Get_Customer
0070 FUNCTION Find(X)Get_Customer_Numeric

The significant difference between these two definitions is the type of parameter
specified in the parentheses. The first accepts a string value while the second requires
a numeric entry.

Multiple definitions of the same method can be specified provided each has a
different parameter list. Knowing which method definition to use is determined by
matching the parameters based on their type, either string or numeric, and the
number of parameters specified.

To illustrate use of this class, create a new instance of Cust4:

Cust4=NEW("Cust4")

Locate the first customer using a string argument:

->x=Cust4'Find("000011")
->PRINT Cust4'Cust_No$," - ",Cust4'Name$
000011 - Flagship Importers

Locate the second customer using a numeric argument:

->x=Cust4'Find(27)
->PRINT Cust4'Cust_No$," - ",Cust4'Name$
000027 - Yorktown Wood Products

Drop the object when finished:

DROP OBJECT Cust4

Panel Class
Panel

This class will be used with the Cust5 example. It assumes a NOMADS File
Maintenance panel called Cstupd has been created for the Customer file. The
contents of the panel.pvc class definition file appears as follows:

00010 ! Panel Definition
00020 DEF CLASS "Panel"
00030 LOCAL Panel_Name$,Panel_Library$
00040 FUNCTION Edit()Do_Panel
00050 END DEF
00060 Do_Panel:
00070 IF NUL(Panel_Name$) \
 THEN Panel_Name$=_OBJ'_CLASS$

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 375

00080 IF NUL(Panel_Library$) \
 THEN Panel_Library$="ProvideX.en"
00090 Sv_prc=PRC;
 RESET ;
 PRECISION Sv_prc
00100 Scrn_ID$=Panel_Name$,Scrn_Lib$=Panel_Library$
00110 PERFORM "*winproc;Post_Enter"
00120 RETURN 1

File Class
File

This class will be used with the Cust5 example. The contents of the file.pvc class
definition file appears as follows:

00010 ! "File" class definition
00020 DEF CLASS "File"
00030 LOCAL FileNo
00040 FUNCTION Open(FILENAME$)Open_File
00050 FUNCTION Close()Close_File
00060 FUNCTION Find(K$)Read_Via_Key
00070 FUNCTION Find(K$,KeyNo)Read_Via_Alt_Key
00080 FUNCTION Find(K$,KeyNo$)Read_Via_Alt_Key2
00090 FUNCTION Find(I)Read_Via_Ind
00100 FUNCTION Next()Read_Next
00110 FUNCTION Next(KeyNo)Read_Next_Alt_Key
00120 FUNCTION Next(KeyNo$)Read_Next_Alt_Key2
00130 FUNCTION Update()Write_Record
00140 FUNCTION Update(K)Write_Record_With_Key
00150 FUNCTION Insert()Insert_Record
00160 FUNCTION Insert(K$)Insert_Record_With_Key
00170 FUNCTION Valid()=1 ! Always true unless overridden
00180 END DEF
00200 ! ^100 Open
00210 Open_File:
00220 ENTER F$
00230 IF FileNo<>0 \
 THEN EXIT 13
00240 X=HFN;
 OPEN (X,IOL=*)F$
00250 FileNo=X;
 RETURN 1
00300 ! ^100 Close
00310 Close_File:
00320 IF FileNo=0 \
 THEN EXIT 13
00330 CLOSE (FileNo);
 FileNo=0
00340 RETURN 1

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 376

00400 ! ^100 Read via Index
00410 Read_Via_Ind:
00420 ENTER I
00430 READ DATA FROM "" TO IOL=IOL(FileNo)
00440 READ (FileNo,IND=I,DOM=*NEXT,END=*NEXT);
 RETURN 1
00450 RETURN 0
00500 ! ^100 Read via primary key
00510 Read_Via_Key:
00520 ENTER K$
00530 READ DATA FROM "" TO IOL=IOL(FileNo)
00540 READ (FileNo,KEY=K$,KNO=0,DOM=*NEXT);
 RETURN 1
00550 RETURN 0
00600 ! ^100 Read via an alternate key
00610 Read_Via_Alt_Key:
00620 ENTER K$,KeyNo
00630 READ DATA FROM "" TO IOL=IOL(FileNo)
00640 READ (FileNo,KEY=K$,KNO=KeyNo,DOM=*NEXT);
 RETURN 1
00650 RETURN 0
00700 ! ^100 Read via an alternate key
00710 Read_Via_Alt_Key2:
00720 ENTER K$,KeyNo$
00730 READ DATA FROM "" TO IOL=IOL(FileNo)
00740 READ (FileNo,KEY=K$,KNO=KeyNo$,DOM=*NEXT);
 RETURN 1
00750 RETURN 0
00800 ! ^100 Read Next on primary key
00810 Read_Next:
00820 READ DATA FROM "" TO IOL=IOL(FileNo)
00830 READ (FileNo,KNO=0,END=*NEXT);
 RETURN 1
00840 RETURN 0
00900 ! ^100 Read Next via an alternate key
00910 Read_Next_Alt_Key:
00920 ENTER KeyNo
00930 READ DATA FROM "" TO IOL=IOL(FileNo)
00940 READ (FileNo,KNO=KeyNo,END=*NEXT);
 RETURN 1
00950 RETURN 0
01000 ! ^100 Read Next via an alternate key
01010 Read_Next_Alt_Key2:
01020 ENTER KeyNo$
01030 READ DATA FROM "" TO IOL=IOL(FileNo)
01040 READ (FileNo,KNO=KeyNo$,END=*NEXT);
 RETURN 1

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 377

01050 RETURN 0
01100 ! ^100 - Update
01110 Write_Record:
01120 IF NOT(_OBJ'Valid()) \
 THEN EXIT 17
01130 WRITE (FileNo);
 RETURN 1
01140 !
01150 Write_Record_With_Key:
01160 ENTER K$
01170 IF NOT(_OBJ'Valid()) \
 THEN EXIT 17
01180 WRITE (FileNo,KEY=K$);
 RETURN 1
01200 ! ^100 - Insert record
01210 Insert_Record:
01220 IF NOT(_OBJ'Valid()) \
 THEN EXIT 17
01230 WRITE (FileNo,DOM=*NEXT);
 RETURN 1
01240 RETURN 0
01250 !
01260 Insert_Record_With_Key:
01270 ENTER K$
01280 IF NOT(_OBJ'Valid()) \
 THEN EXIT 17
01290 WRITE (FileNo,KEY=K$,DOM=*NEXT);
 RETURN 1
01300 RETURN 0

Cust5 Class
Cust5

This class illustrates the ability to inherit the characteristics of additional classes. The
contents of the cust5.pvc class definition file appears as follows:

00010 DEF CLASS "Cust5"
00020 LIKE "File","Panel"
00030 PROPERTY Cust_No$ WRITE Change_Cust
00040 PROPERTY Name$,Addr$,City$,Salesrep$,Amt_Owing
00050 END DEF
00060 !
00070 On_Create:
00080 Panel_Library$="cstfile.en",Panel_Name$="cstupd"
00090 RETURN _Obj'Open("cstfile")
00100 !
00110 On_Delete:
00120 RETURN _Obj'Close()
00130 !

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 378

00140 Change_Cust: \
 ENTER C$
00150 IF NOT(_Obj'Find(C$)) \
 THEN Cust_No$=C$
00160 RETURN 1

While the definition is relatively small, this class is more powerful than it looks due
to the inclusion of File and Panel classes provided earlier. Referencing methods and
properties from inherited classes is accomplished by prefixing the method name
with _Obj, as illustrated in the following statements:

0090 RETURN _Obj'Open("cstfile")
0120 RETURN _Obj'Close()
0150 IF NOT(_Obj'Find(C$)) THEN Cust_No$=C$

In each case, prefixing the method name with _Obj (in place of the object identifier)
indicates that the method exists somewhere in the current class. Knowing its exact
location is not necessary. See Using Methods and Properties, p.354. The example
below uses the Edit() method from the Panel object to process a NOMADS panel.

To illustrate use of this class, create a new instance of Cust5:

Cust5=NEW("Cust5")

Display the available properties and methods:

->PRINT Cust5'*
Addr$,Amt_Owing,City$,Close(),Cust_No$,Edit(),Find(),Insert(),
Name$,Next(),Open(),Salesrep$,Update(),Valid(),

Invoke a NOMADS panel:

->x=Cust5'Edit()

Drop the object when finished:

Drop Object Cust5

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 379

Cust6 Class
Cust6

This class demonstrates the Polymorphism aspect of object orientation. It also
introduces the concept of method overriding, which is the ability for a child class to
override methods (same name and argument list) with different functionality. The
contents of the cust6.pvc class definition file appears as follows:

00010 DEF CLASS "Cust6"
00020 LIKE "File","Panel"
00030 PROPERTY Cust_No$ WRITE Change_Cust
00040 PROPERTY Name$,Addr$,City$,Salesrep$,Amt_Owing
00050 FUNCTION Find(X$)Do_MyFind
00060 END DEF
00070 !
00080 On_Create:
00090 Panel_Library$="cstfile.en",Panel_Name$="cstupd"
00100 RETURN _Obj'Open("cstfile")
00110 !
00120 On_Delete:
00130 RETURN _Obj'Close()
00140 !
00150 Change_Cust: \
 ENTER C$
00160 IF NOT(_Obj'Find(C$)) \
 THEN Cust_No$=C$
00170 RETURN 1
00180 !
00190 Do_MyFind:
00200 ENTER K$
00210 K$=STR(NUM(K$,ERR=*NEXT):"000000")
00220 K$=PAD(K$,6)
00230 RETURN _Obj'Find(FROM "File",K$)

The Find() method declared in Cust6 is designed to augment the functionality of
the Find() method from the File class. The Find() method in this class intercepts
the value, re-formats it to match the key value for the data file, and then passes the
resulting value to the Find() method in the File class.

To illustrate use of this class, create a new instance of Cust6:

Cust6=NEW("Cust6")

Pass what appears to be an invalid Customer ID to the Find() method:

->x=Cust6'Find("67")
->PRINT "Customer: ",Cust6'Cust_No$," - ",Cust6'Name$
Customer: 000011 - Flagship Importers

Drop the object when finished:

Drop Object Cust6

11. Object-Oriented ProvideX Putting It All Together

ProvideX User’s Guide V8.30 Back 380

ProvideX User’s Guide V8.30 381 Back

User’s Guide A
Appendix

Overview

Overview
This appendix covers miscellaneous topics and includes information that is
supplementary to the other chapters in this manual. Section headings, page numbers,
and outlines of these topics are listed below:

Security Features, p.382
Discusses various software and system security issues and some of the steps that
can be taken to control user access, protect ProvideX applications, and maintain
the integrity of sensitive data.

Device Drivers, p.390
Documents the use of device drivers in ProvideX to define control sequences and
special processing commands for handling terminal and printer devices.

Handling Images and Icons, p.398
Provides general information on how various images (bitmaps or icons) may be
used within a ProvideX program.

Appendix Security Features

ProvideX User’s Guide V8.30 382 Back

Security Features
Most operating systems allow different users to have access to the same machine,
each with their own files, desktop settings etc. Business applications are often
designed so that multiple users can be logged onto the same system, to access the
same data over various types of networks and/or the internet.

Of course, with multi-user capabilities comes issues of security. Operating systems
and networks provide their own level of protection, but ultimately, it is the
developer who is responsible for securing sensitive data and for managing all the
activities that are to be carried out within their applications.

ProvideX security measures can include various combinations of encryption,
authentication, authorization, and or access control functionality. This section
discusses the various network-level, program-level, and data security features
available to you when designing and building your applications.

Restricting Access to Command Mode, p.382
Password Protection, p.383
Hash Function, p.384
Software Registration and Activation, p.384
NOMADS Security Manager, p.386
Secure Socket Layer (SSL), p.386
Minimizing Client-Server Risks, p.388

Restricting Access to Command Mode
Using two directives, SETESC and ERROR_HANDLER, you can totally eliminate the
possibility of the user accessing ProvideX command mode from your application.
Use of the ERROR_HANDLER directive to handle abnormal error conditions is
described in the Chapter 3. Development Tools.

The SETESC directive allows the user to disable the ESCape (or Break) key
recognition within ProvideX. When SETESC OFF is executed, all user escape requests
are ignored.

This mode of operation continues for the duration of the session or until SETESC ON
is executed. An ESCape/Break will be recognized in those programs that specifically
have a SETESC nnnn directive regardless of the ON/OFF status. This allows
programs that have escape handling logic to continue to function properly.

To prevent the ESCape/Break key from allowing the user to interrupt the execution
of an application you should include the following line in your START_UP
initialization program:

0000 SETESC OFF

During the testing and development stages of an application, it may be desirable not
to execute this directive or to make the execution of these directives optional based
on the userID (UID or WHO).

Topics

Appendix Security Features

ProvideX User’s Guide V8.30 383 Back

Password Protection

There are several places in ProvideX to assign passwords for restricting access to
programs and data files, at the language level and in the development environment.

Program Security
The PASSWORD directive may be used to place a user-specified password on the
current program code. Simply load the program, enter the PASSWORD directive
followed by the desired password, and then save the program. Once saved with a
password, the program may not be listed or modified in any way without first
removing the password by re-entering the PASSWORD directive with the correct
password string.

If the password string is preceded by an * asterisk, the PASSWORD directive defines a
common password which will be automatically applied to all passworded programs
as they are loaded and assigned to all new programs.

Passwords are maintained within the actual object code of the program and are
encrypted. If a password is placed on a program and subsequently forgotten there is
no simple way to remove it. If you need to remove a password, contact Sage ProvideX
Support for assistance.

The 'EL'= system parameter can be used to check the current encryption setting, or
set encryption to a new level. For further information on this feature, see
PASSWORD in the Language Reference, p.238.

Data Passwording and Encryption
The PASSWORD directive can also be used to assign passwords to files with the
option to encrypt data. The KEY=pswd$ option is required to OPEN files that have
been passworded. Encryption is only available for VLR and EFF files. In order to
define/change a password, you must have exclusive access to the file and it must be
empty. The different syntax formats for passwording data via the PASSWORD
directive are listed and described in the ProvideX Language Reference, p.238.

The following table shows the usage, access level, and encryption associated with each
syntax format used to assign a password to a data file:

Another level of data security may be added by introducing the hash function into
the process. See Hash Function, p.384.

PASSWORD Format Access
Level

Without Password With Correct Password
Encrypted

Open Read Write Open Read Write

OPEN 0 No No No Yes Yes Yes No

WRITE 1 Yes Yes No Yes Yes Yes No

OPEN AND ON DATA 2 No No No Yes Yes Yes Yes

WRITE AND ON DATA 3 Yes Yes No Yes Yes Yes Yes

Appendix Security Features

ProvideX User’s Guide V8.30 384 Back

Other Passwording in ProvideX
Following are some of the other password-related mechanisms used in the ProvideX
development suite:

Data Dictionary. The Data Dictionary Maintenance interface in the NOMADS
toolset includes a Data File Password Utility that allows you to add, change or
remove passwords in ProvideX data dictionary files.

Views System. The ProvideX Views system in ProvideX allows you to lock View
definitions with a password to control modification.

Application Server. The administrator is able to set passwording for server-side
access as well on remote user access to the application server.

Multi-Lines. Creating a multi-line control in NOMADS and at the language level
includes the option to cover password entries using the $ dollar sign symbol as
substitute for each character entered. The AutoComplete feature is disabled when
the multi-line used for a password field.

Hash Function

The ProvideX HSH() function introduces another technique for data protection. It is
not used to encrypt data directly, but to check authenticity. The hashing mechanism
takes a block of data as input, and produces a hash key value as output. The key
value can then be used to check the integrity of the original data without having to
reveal its contents. Hashes are most often used to obscure sensitive data that should
not be made available to anyone but the owner; e.g., credit card numbers, bank IDs,
passwords, etc.).

HSH() supports the most widely used and trusted hash algorithms in the industry,
including MD5 and SHA-1; however, only versions of ProvideX that support
OpenSSL and have OpenSSL installed properly will be able to access these types of
hashes. It also has the ability to access ciphers in OpenSSL libraries to encrypt and
decrypt information.

For further information on the use of ProvideX hash functionality, see HSH() in the
Language Reference, p.387.

Software Registration and Activation

ProvideX includes tools and facilities to protect applications from software piracy
through the use of package registration and activation. All instances of ProvideX
require a base system or primary-level activation that enables use of the language

Appendix Security Features

ProvideX User’s Guide V8.30 385 Back

itself, program editing, listing, saving, and access to console mode. Activation keys
are based on specific hardware configurations thus preventing applications from
being moved from one computer to another without re-activation.

Registration System
Developers can also have activation keys assigned specifically to their applications
where, without the correct key, the programs cannot be viewed, modified or run. In
fact, the programs are encrypted with a key that only the original developer will
have access to. The registration system is also useful for releasing software that has a
built-in expiry date/time based on an assigned activation key.

Each development shop using this feature would be required to maintain their own
key generation system for creating and distributing keys. They will be given a
unique owner code, where each generated key is specific to that code only. One
owner code will not provide access to another development shop’s programs. Each
is independent of the other.

A registered program may be assigned from 0 to 20 flags. When a key is generated, it
may be done in such a way that one or more flags will be valid. This gives the
developer the ability to create keys that allow or deny users access to specific
modules within their application. Also, flags may be used to control whether or not
the key allows the person running the program the ability to modify or list
programs. To obtain a registration number and the tools required to implement this
facility, contact your local distributor.

Creating Registered Programs
To create a program which is to be secured via a registered activation key the
programmer uses the following command:

SAVE "progname",OWN=package_no [,FLG=n:n:n]

The package number must be a registered package number that has been assigned to
the developer and for which he/she must have been activated as a developer. The
FLG=n:n:n option allows the programmer to define which registration flags must be
active in order to LOAD/RUN this program. If any flags are specified, then at least
one flag must match that of the users registration.

Note: Complete information on ProvideX product licensing can be found in the
ProvideX Installation Guide.

Note: Full details on the use of this facility are beyond the scope of this manual but
can be provided to developers upon request.

Appendix Security Features

ProvideX User’s Guide V8.30 386 Back

Other Considerations
This type of registration is not for everyone. It requires that each development shop
maintain their own system to implement, track, and distribute their unique keys.
Due to commitment involved in this type of system, the majority of ProvideX
developers prefer to use other distribution controls within their applications; i.e.,
Password Protection, p.383.

Also, Sage may be able to recover a passworded program when the password is lost;
however, it is impossible to recover a program that is encoded with an owner code if
the mechanisms used to encrypt it are lost. Because of this danger, you can arrange
for Sage to maintain a copy of your activation key generation parameters which
provides a method of recovery in case you lose your key generation components.

NOMADS Security Manager

The Security Manager system in NOMADS allows you to protect your GUI-based
ProvideX applications from unauthorized access. Individual screen components can
be set up to allow full access, view-only access, or no access for specific users. Each
user’s authorization level can be based on User ID and/or security classifications.

This system is maintained via the Security drop-down menu in the NOMADS
Session Manager menu bar.

By default, if a NOMADS panel has no existing object classifications, there is no
security and all users are granted full access. If you assign one or more security
classifications, then only those users who are registered will have access. NOMADS
does not display the control to users who are not registered in an assigned
classification.

More information on NOMADS is provided in Chapter 6. Graphical User Interfaces.
Complete documentation on this feature is provided in the ProvideX NOMADS manual.

Secure Socket Layer (SSL)

The Secure Socket Layer (SSL) is an industry-standard protocol for managing the
security of message transmissions over the internet. It is used by millions of web
applications around the world for the protection of online customer transactions.
Using SSL protocol in a website instills confidence that the user can expect a secure
link, and that the source belongs to a valid, legitimate organization.

Appendix Security Features

ProvideX User’s Guide V8.30 387 Back

SSL encodes the data rendering it unreadable to anyone who may try to intercept the
transmission. When an SSL session is started, the server sends its public key to the
client, which the client uses to send a randomly-generated private key back to the
server in order to establish a secret key "exchange" for that session.

For information on how SSL can be used with ProvideX applications, see ProvideX
SSL Support, below.

Certificates and Encryption Keys
In order to be able to generate an SSL link, a server requires an SSL certificate. While
it is possible to generate your own certificate using tools available on the internet,
you should only use these internally or for testing your site. With self-generated
certificates, users will likely receive warning messages on their browsers stating that
the certificate has not been authenticated and may not be from a "trusted authority".

Of course, "certificate not trusted" errors in your commercial applications would be
undesirable and could drive away customers. If you wish to avoid warnings like
these, you should obtain your SSL certificates from a trusted third party Internet
Certification Authority. Most major operating systems and browsers maintain lists of
trusted Certification Authorities and will establish secure links using their
certificates transparently. The padlock symbol is often used to signify when a
encrypted link is established using a trusted SSL certificate.

Usually, the encryption key obtained from a Certificate Authority controls the level
of encryption, such as 40-Bit, 56-Bit, 128-Bit, or 1024-Bit encryption.

Internet communication, client-to-server or server-to-client, must be encrypted at
both ends or un-encrypted on both ends. You cannot mix requests as it is not
possible for an un-encrypted browser to communicate with an encrypted server and
vice versa. By convention, browser requests addressed http:// will make requests
from an un-encrypted web server; use https:// to make requests to an SSL
encrypted web server.

ProvideX SSL Support
Support for TCP/IP-level SSL-encryption is available as part of the base ProvideX
license. The SSL option is available with all ProvideX thin-clients when configured
for use in the ProvideX Application Server. (SSL is not fully supported under
*NTHost.) Instructions for using SSL to secure client-server applications can be found
in the ProvideX Client-Server reference manual. See also Hosting Facilities, p.242.

The ProvideX WebServer interface supports SSL encryption for transactions between
your web server and the user’s browser. For details, refer to the ProvideX WebServer
documentation.

Note: Because ProvideX uses OpenSSL libraries to provide SSL functionality, you
will need an X509 certificate created for use with OpenSSL or Apache. (Apache also
uses OpenSSL libraries.)

Appendix Security Features

ProvideX User’s Guide V8.30 388 Back

FIN() Function for SSL
If SSL encryption is being used with your ProvideX application, the FIN() function will
obtain SSL details regarding a particular connection; e.g., FIN(10,"SSL_CIPHER").
The following keywords pertain specifically to SSL:

All X509 keywords return information about the remote certificate; i.e., from either
the server certificate (if a client requests it) or the client certificate (if the server
requests it). Any of the X509 requests can be prefixed with MY_ to return the local
station's certificate information; e.g., MY_X509_KEYTYPE, MY_X509_SUBJECT.

These requests can only be made once a connection is established. When made on a
server, the X509/SSL information pertains to the last/current socket connected.

Minimizing Client-Server Risks

Controlling the TCP/IP services available on a particular machine, and plugging
security holes at the OS level (if any) will help keep unauthorized people from
accessing sensitive data in a client-server implementation.

Your hosting facility should be able to manage what your users are capable of
running via WindX, JavX, and UltraFX. Remember that the *NTHost server
supplied with ProvideX does not have built-in security and is not recommended
for use outside of a closed local area network. The ProvideX Application Server
add-on is a much better choice. It includes administrative services that allow you
to protect your applications and data over an unsecured network, such as the
internet. See Chapter 8. Client-Server for more information.

It is the security holes in your applications that are the greatest concern. While the
OS itself may be tightly secured, programming mistakes in the applications which
run on the server are far more prevalent security risks, particularly if they grant
access to console mode or give the ability to run OS commands. For more on this
topic, see Restricting Access to Command Mode, p.382

Servers that are protected behind firewalls do provide some security. However, each
port on a firewall that allows inbound access, or is redirected to an internal server,
will have the potential to show cracks. Security depends on the application that is
servicing the particular port. Whether or not you are opening (or redirecting) one

X509_ISSUER Who issued the certificate.
X509_SUBJECT Who the certificate was issued to.
X509_NOT_BEFORE Earliest date the certificate is valid for.
X509_NOT_AFTER Latest date the certificate is valid for.
X509_KEYTYPE Type of key in the certificate (DSA/RAS and number of bits)
SSL_CIPHER SSL connection cipher used information as per the OPENSSL

SSL_cipher_description specs.

Appendix Security Features

ProvideX User’s Guide V8.30 389 Back

port or one thousand ports on a firewall, does not really make a difference. Once a
single port is open for an application to service, the security is only as good as that
provided within the application.

Virtual Private Networks (VPN) that allow remote users to become a part of the
internal LAN provide good security if the authentication methods are sufficiently
stringent. The best security VPN servers provide for security measures is SecureID, a
rotating authentication code. Only those users with the correct access codes and one
time SecureID codes may get in.

VPNs do require a large amount of computing power at both the server side and the
client end. Since all packets transmitted by each client are encrypted and then placed
inside a packet which will be routed across the Internet, the client must be fairly
powerful to keep up with encrypting outgoing packets and decrypting incoming
packets. The server, on the other hand, must be able to recognize which packets are
destined for which VPN-connected clients, capture them out of the data stream,
encrypt them, and transmit them to the appropriate client.

Remote access solutions such as Citrix, MS Remote Desktop, and VNC provide
security at the login level. Once a client has a login, then they typically have access
levels that are the same as any local PC on a network and can do as much damage as
any given PC / User Login may do.

Secure Socket Layer (SSL) encryption only deals with data that is in transit from the
server to the client and vice versa. Encrypting the data does not provide application
level security; it only prevents unauthorized people from capturing the data packets
between machines and using the data within those packets. See also Secure Socket
Layer (SSL), p.386.

Appendix Device Drivers

ProvideX User’s Guide V8.30 390 Back

Device Drivers
One of the more powerful features of the ProvideX development environment is the
ability for developers to modify device drivers for use with their applications. Device
drivers are critical software components used to define control sequences and special
processing commands for handling system hardware (primarily terminals and printers).

No special device drivers are required to run applications under Windows versions
of ProvideX. For UNIX/LinuX installations, ProvideX ships with a variety of
pre-built device drivers (which should meet most user requirements). However,
developers may need to make modifications in order to accommodate functionality
that is not implemented in an existing driver, or a new driver may be required so
that an application can take advantage of a device that is not currently listed.

Defining Devices, p.390
*DEV and *UDEV Directories, p.391
Printer Devices, p.391
Terminal Devices, p.391

In simple terms, device drivers are analogous to ProvideX subprograms (see Called
Procedures, p.81); only, in this case, the program (device driver) is used exclusively
to perform the following:

1. Define the type of device.

2. Define the command sequences needed to process mnemonics.

3. Define the input sequences for the various CTL values associated with the device.

Because device drivers are programs, a variety of functions can be performed within
them. They can even be used to redirect the file being opened to another device or file,
ask questions of the user, or issue operating system commands. In general, it can do
anything that a normal ProvideX program can do, so long as nothing happens to effect
the current state of the program which originally opened the device; e.g., a BEGIN
statement would close all files.

When ProvideX first accesses a device (and there are no problems opening the
device) it automatically calls the associated device driver, if specified. For terminals,
the device driver is run at the startup of ProvideX. For printers, the device driver is
run when data is sent to the printer. During execution of the device driver, the
system variable LFO has the file number for the device.

Defining Devices

Depending on the associated device, device driver code will begin with one of the
following directives:

DEFPRT (chan)col,ln ... for a printer device
or
DEFTTY (chan)col,ln ... for a terminal device

Topics

Appendix Device Drivers

ProvideX User’s Guide V8.30 391 Back

DEFTTY and DEFPRT tell Providex that the channel opened is either a terminal or a
printer and will give you the FIN() information back in either terminal format or
printer format. It uses the column and line information to give you some starting
values to use, if you query the FIN(), MXC() and MXL() functions. For more
information, see DEFTTY and DEFPRT in the Language Reference, p.80. Printer and
terminal device drivers are further explained in the sections that follow.

*DEV and *UDEV Directories

The associated device driver file must be located in the ProvideX *DEV directory
(e.g., /pvx/lib/_dev) and is referenced via *DEV/xxxxxxxx, where xxxxxxxx is the
name of the driver specified. Driver names are limited to 12 characters in length,
lowercase only. If the driver cannot be located, this may result in an Error #100 -
No driver for terminal type or library missing.

If you plan to customize one of the drivers supplied with ProvideX, it is not
recommended that you re-save the driver using the same file name in *DEV.
Unfortunately, the ProvideX installation process will automatically over-write these
files and you will lose all changes.

For terminal drivers, you have the option of using the *UDEV directory (e.g.,
/pvx/lib/_udev) to store customized drivers. This option is not available for
printer device drivers. For more information, see Creating a Supplemental Device
Driver, p.393

Printer Devices

ProvideX device drivers for printers are used to consolidate mnemonics and (legacy)
control sequences into a single file to be called from the main program whenever the
target printer is opened.

A printer device can also be defined to the system by a logical device descriptor, or
link file. This type of file is used in ProvideX to define the actual device path and
device type. The use of a link file allows you to maintain a common printer name
(alias) that will represent all possible print destinations from your application. Link
files can be edited directly or maintained using the ProvideX utility *UCL. Printer
device drivers are fully documented in Chapter 7. Printing.

Terminal Devices
terminals

Historically, the main user interface hardware of a computer (keyboard and video
display) was called a terminal. However, this definition is not as common today with
the advent of personal computers, GUI environments, and the variety of operating
systems and interface devices available. While the term is still used on occasion, the
"terminal" is usually associated with a system’s command line shell or console-style
environment; e.g., text terminal or terminal window.

Appendix Device Drivers

ProvideX User’s Guide V8.30 392 Back

Applications running on some older operating systems may require a terminal
device driver to be configured for user access in this environment. As mentioned
earlier, terminal device drivers are opened during the ProvideX startup. ProvideX
uses the value assigned in the TERM environment variable to determine which device
driver is used for the current terminal. Generally this is already set to an appropriate
value by the operating system.

Driver Content
The following is an example of a terminal device driver. In general, terminal drivers
are much like printer drivers in that they define the command sequences for the
mnemonics, as well as the input sequences that the terminal generates for function
and edit command keys.

0010 ! WYSE 50 -- Terminal driver
0020 DEFTTY (LFO)80,24
1000 ! 1000 - Mnemonics
1010 MNEMONIC (LFO)'@@'=ESC+"=\LB\CB"
1020 MNEMONIC (LFO)'BS'=08
1030 MNEMONIC (LFO)'CE'=ESC+"Y"
1040 MNEMONIC (LFO)'CH'=ESC+"= "
1050 MNEMONIC (LFO)'CL'=ESC+"T"
1060 MNEMONIC (LFO)'CS'=ESC+"+"
1070 MNEMONIC (LFO)'CF'=ESC+"&"+ESC+";"+ESC+"'"
1080 MNEMONIC (LFO)'DC'=ESC+"W"
1090 MNEMONIC (LFO)'IC'=ESC+"Q"
1100 MNEMONIC (LFO)'LD'=ESC+"R"
1110 MNEMONIC (LFO)'LI'=ESC+"E"
1120 MNEMONIC (LFO)'RB'=07
1130 MNEMONIC (LFO)'RM'=ESC+"`"+0000+ESC+"("+
1130:ESC+"H"+03+ESC+"G0"
1140 MNEMONIC (LFO)'SB'=ESC+")"
1150 MNEMONIC (LFO)'SF'=ESC+"("
1160 ! Define Attribute output table
1170 MNEMONIC (LFO)'AT'=ESC+"G\A"+"&"+$0F$+"T"+
1170:10+"0p4t2r6v8x<|:z>~"
1180 MNEMONIC (LFO)'GS'=ESC+"H"+02
1190 MNEMONIC (LFO)'GE'=ESC+"H"+03
1200 MNEMONIC (LFO)'GD'="2315:6849=0"
9000 ! 9000 - Load terminal control keys
9010 RUN "*TTY"

A terminal device driver is typically much larger than a printer device driver. This
has to do with the fact that more mnemonics are required for a terminal than for a
printer. While it is not necessary to define matches within a terminal driver for all
ProvideX mnemonics, it is better to define as many as possible. For example if no 'CL'

Appendix Device Drivers

ProvideX User’s Guide V8.30 393 Back

mnemonic is specified, ProvideX will output spaces in order to clear a line (this is
not very efficient). The only mnemonic absolutely necessary is the internal
mnemonic '@@' which is used to define how to position the cursor.

The DEFTTY command is also mandatory. As mentioned before, this directive
indicates to ProvideX that the device is a terminal (not a printer). DEFTTY must
contain two additional parameters: the default number of columns and the default
number of lines.

About *TTY
The last line of any terminal device driver should be RUN "*TTY". This utility
performs additional terminal initialization for function keys, etc. It also checks the
lib/_udev directory automatically to locate and CALL the supplemental terminal
device driver (if found).

Creating a Supplemental Device Driver
As mentioned earlier, terminal device drivers supplied with ProvideX should not be
modified directly. Instead, create a supplementary driver and store it in a directory
called *UDEV (e.g., /pvx/lib/_udev). Follow the steps below:

1. If it does not already exist, create the *UDEV directory (e.g., /pvx/lib/_udev).

2. Create a new program. Remember, don’t modify/over-write the original driver.
Place only modified or additional content in the supplemental driver. This
program should terminate using an END directive (do not use RUN "*TTY").

3. Save the new program in *UDEV using the same file name as the original driver.

At runtime, ProvideX will start by calling the original driver. The *TTY program will
automatically locate and CALL the supplemental version of the device driver from
*UDEV. For example, if you need to make modifications to *DEV/VT100, you would
create second file as *UDEV/VT100 to include the changes – *TTY checks the *UDEV
directory for the supplemental VT100 driver immediately after it runs the original
*DEV/VT100 driver.

Creating a New Terminal Device Driver
If you need a device driver for a terminal type that is not already installed with
ProvideX, a new driver may be created for this purpose. You can take a chance and
save the file in the *DEV directory but, if ProvideX decides to support this terminal
type in a future release, your new device driver may get over-written.

This risk can be avoided using a technique similar to creating a supplemental driver
in the *UDEV directory. In this case, the "supplemental" file contains almost all of the
driver content. Follow the steps below:

1. Create a new program that contains only two commands; i.e.,
DEFTTY 80,25
RUN "*TTY"

Appendix Device Drivers

ProvideX User’s Guide V8.30 394 Back

This will be the starting device driver. The maximum lines and columns must be
set here, and cannot be changed in the supplemental program. Save it in *DEV
(e.g., /pvx/lib/_dev).

2. If it does not already exist, create the *UDEV directory (e.g., /pvx/lib/_udev).

3. Create a new program to map the mnemonics and control sequences required for
running the new device. This program should terminate using an END directive
(do not use RUN "*TTY"). Save this file in *UDEV using the same name as the
starting device driver (created in step 1).

At runtime, ProvideX will CALL the first driver, then immediately CALL the
"supplemental" device driver from *UDEV to run the true driver content.

Variable Mnemonic Data
Some mnemonics require dynamic information (variables) to generate specific
output sequences (e.g., the line and column number defined in the '@@' mnemonic).
There are 11 variables that may be included in the output sequence. Identifying these
variables is done by specifying a \ backslash followed by a one character variable
identifier and output formatting information.

Define Variable: =ESC+"[\id_char{modifier}fmt_code"

Where:

Note: Terminal display mnemonics are outlined in the sections that follow. A general
discussion of mnemonics is provided in Chapter 2. Language Elements. For the
complete list, see Mnemonics in the Language Reference, p.575.

\id_char Identifier for the variable. Include the backslash in the syntax. Valid
identifiers include:
\b Bottom margin of window/scroll region
\h Height of window/scroll region
\l (lowercase L). Left margin of window/scroll region
\r Right margin of window/scroll region
\t Top margin of window/scroll region
\w Width of window/scroll region
\A Current attributes in binary
\B Background colour index
\C Current column
\F Foreground colour index
\L Current line

Appendix Device Drivers

ProvideX User’s Guide V8.30 395 Back

'@@' Mnemonic - Cursor Position
This mnemonic must be defined for a terminal. It is used by ProvideX to position the
cursor within the screen. Typically the command sequence for this mnemonic will
reference the mnemonic variables \L and \C.

If the terminal supports the ability to establish scroll region, you may specify a 'WX'
mnemonic. This mnemonic will be output by ProvideX whenever a 'SCROLL' or
'WINDOW' related mnemonic is executed. The 'WX' mnemonic command sequence
must establish a new top/bottom line on the screen and restrict all displays within
this region. If the terminal does not support a scroll region (as is usually the case)
ProvideX will emulate this functionality.

'RM' - Reset Mode
This mnemonic should define the required command sequence to restore the
terminal to foreground mode, line wrap enabled, no blinking, no underscore, no
reverse, scroll mode enabled, and white on black text.

'Fn' and 'Bn' - Colour Attributes
The mnemonics 'F0' through 'F7' and 'B0' through 'B7' are used to define the
command sequences to set terminal foreground and background colours
respectively.

fmt_code The variables above must be followed by one of the following output
format character codes:
2 Output is two-byte ASCII
3 Output is three-byte ASCII
a Output is ASCII plain text number (base 0)
b Output is single byte binary (base 0)
A Output is ASCII plain text number (base 1)
B Output is single-byte binary (base 0x20)
T Table output. Following T, the next byte must contain the number of

bytes in the table. The table must follow that in the output sequence. If
the number of bytes exceeds table length, no output is generated.

modifier Between the output format code and variable you can optionally specify
one or more modifiers of the variable value. The list below shows valid
modifiers and their associated functions:
+ (Plus sign) Add the value of the next byte
- (Minus sign) Subtract the value of the byte
& (Ampersand) AND the value of the next byte
^ (Caret) XOR the value of the next byte
| (Pipe) OR the value of the next byte

Appendix Device Drivers

ProvideX User’s Guide V8.30 396 Back

'AT' - Visual Attributes
Since many terminals vary in the command sequences required to enable and
disable visual attributes (underscore, blink, etc.), ProvideX provides special
processing for attribute mnemonic output.

Generally when the user program issues a mnemonic to enable a visual attribute,
ProvideX will output the command sequence associated with the specified
mnemonic. When the program issues the mnemonic to disable the attribute, its
command sequence is output. Unfortunately not all terminals have command
sequences to disable specific attributes. In this case ProvideX will issue a 'RM'
mnemonic, then re-send all other necessary command sequences needed to set the
terminal to the proper mode.

Some terminals require that visual attributes be merged into a single attribute
character. To handle these types of terminals, ProvideX uses the pseudo mnemonic
'AT'. If the 'AT' mnemonic is defined, ProvideX will output it in order to satisfy all
visual attribute changes. The command sequence for the 'AT' mnemonic can use the
parameter '\A' (current attributes in binary) in order to determine the desired
attribute.

The attribute values (\A) is comprised of a binary value representing the various
attribute options. These are: 1 - Bold/Foreground, 2 - Inverse video, 4 - Blink, 8 -
Underscore, 16 - Graphics character.

'Cn' - Cursor Display Mnemonics
Three mnemonics are used to control the display of the terminal cursor: 'C0' - Hide
cursor command sequence, 'C1' - Regular cursor display sequence, 'C2' - Insert mode cursor
display sequence.

'GD' - Graphic Characters
The mnemonic 'GD' is used to define the 11 characters that can be used for text mode
line-drawing operations. The standard line-drawing characters are A-K (and for
compatibility 0-9 and colon). See 'GD' in the Language Reference, p.609.

'CP' and 'SP' - Screen Size
When specifying a mnemonic that will change the size of the screen (such as 'CP' for
condensed print) you must provide new screen dimensions with the MNEMONIC
directive. For example a WYSE 60 supports the following command sequence:

MNEMONIC (LFO)'CP'=ESC+"`;":132,25

The parameters 132,25 tell ProvideX what the new dimensions of the screen are.

Flexible Text Fonts. Applications can change the text font used by the screen in
Windows by simply defining the font and the logical screen size as a mnemonic; e.g.,

MNEMONIC (0) 'CP' = "Courier New,-8":120,40
MNEMONIC (0) 'SP' = "*":80,25

Appendix Device Drivers

ProvideX User’s Guide V8.30 397 Back

Once the above mnemonics have been set up, issuing a PRINT 'CP' will change the
screen font to Courier New with a size of 8 points. PRINT 'SP' will restore the
screen font to the default.

Specifying Conversion Tables
Two special mnemonics are also supported for character translation:

'*I' defines a 256 byte table of characters. As ProvideX receives each character of
input, it is used as an offset into this table. The byte found at the offset is the actual
character value returned to the program.

'*O' defines a 256 byte table which is used during output. If defined, each character
output is used to offset into the table to get the true character to send to the device.

Defining Control Key Values
Within the device driver the DEFCTL directive can be used to define the terminal
input sequences for the various function and editing keys. To simplify the process of
defining these keys, the ProvideX utility *TTY is called. It reads the system file
"*KYBRD.CFG" which contains the key configuration information and will
automatically load them.

The utility *UCK is provided to allow the user to define and change the keyboard
map based on the terminal type and user ID.

Note: The text plane font must always be a fixed font.

Appendix Handling Images and Icons

ProvideX User’s Guide V8.30 398 Back

Handling Images and Icons Displaying Controls /Images

As described in earlier sections of the documentation, the following techniques,
allow you can retrieve and incorporate images and icons for a variety of purposes in
your GUI-based applications:

• Display images via the 'PICTURE' mnemonic (Display Objects, p.201).

• Associate images for GUI controls (Control Objects, p.150).

• Specify icons to customize the upper left corner of dialogue windows via the
'OPTION' mnemonic or INI file setting, ICON= .

This section discusses some the general concepts and ProvideX functionality
involving the use of images in ProvideX applications. For more information on
creating graphical controls and other graphical objects, see Chapter 6. Graphical
User Interfaces.

Internal vs External Images
Images are recognized as internal in ProvideX if they have a leading exclamation
mark (!) in their filenames; e.g.,

PRINT 'PICTURE'(220,210,600,500,"!Binoculars",2)

Internal images can be accessed if they are embedded within the ProvideX
executable itself, supplied in an associated resource library, or exist in a file located
in the *BMP directory. Use the 'PICTURE' mnemonic to return a list of available
internal images (including the set of standard OS icons); e.g.,

X$='PICTURE'(*)
PRINT X$

To access images that are external to ProvideX, specify the path and filename instead
of the exclamation mark; e.g.,

PRINT 'PICTURE'(1,1,100,100,"C:\WINDOWS\CLOUDS.BMP,T",0)

Recognized File Types
Mult iple Image Support

By default, only bmp or ico image formats are supported automatically in ProvideX. By
installing the Multiple Image Support add-on package, you can extend the list of
supported graphic images to include several raster and vector graphic file formats,
including jpg, ico, gif, tiff, png, pcx, pax, wmf, emf, apm, and tga.

Note: For more information on handling images in NOMADS, refer to the ProvideX
NOMADS Reference.

Note: The names of image files placed in the *BMP directory should be in lowercase.

Appendix Handling Images and Icons

ProvideX User’s Guide V8.30 399 Back

This product may require a separately-purchased activation key apart from your initial
ProvideX activation. Contact your local ProvideX dealer/distributor or visit
www.pvx.com for complete product information and licensing.

Sizing and Placement
For some controls (i.e., LIST_BOX, MENU_BAR, and POPUP_MENU) the dimensions
of the first bitmap/icon defined in a list of elements is assumed to be the default size
and placement for all images in the control. See Control Objects, p.150.

Enhanced Icons
ProvideX is able to use ico files that contain multiple icons, different sizes, and
different colour formats. Icons can also be retrieved from other file types, including
.exe, .dll, .ocx, .drv, .cpl, .scr and .icl (icon libraries). The file types are
described below.

The following optional syntax items may be applied in the 'PICTURE' and 'OPTION'
mnemonics, as well as in control object directives to define the location and/or
attributes of an icon to be retrieved from an enhanced icon source:

[filename] [@resourcename | @resourcenum] [%Size] [,T | ,G]

Where:

Standard ProvideX search rules apply to the filenames. A leading exclamation will
also search the *BMP directory. Colour depth selection (16, 256 or 24-bit) is chosen
automatically by the OS based on the user's current video card colour depth and the
colour depth of the icon available within the file.

filename File containing icon(s). If no filename is given, then the currently
loaded resource library is searched.

@resourcename String name of the specific resource identifying the icon. If no
resource is specified, the first icon in the file will be loaded.

@resourcenum Specific resource number identifying the icon. If no resource is
specified, the first icon in the file will be loaded.

%size 1 to 3-digit number of pixels representing the X or Y size of the icon
displayed. This size is used for both X and Y axes; e.g., %16
displays the icon in 16 x 16 pixels.

If no %size is given, then the first format available for the icon is
used. If %0 is specified, then the default OS icon size is used.

T or G Transparency substitution indicator where
T means use upper left most pixel colour or
G means use colour RGB: 192,192,192.

Note: Syntax options (if applied) must appear in the above defined order.

Appendix Handling Images and Icons

ProvideX User’s Guide V8.30 400 Back

Examples:
C:\Pvx\Pvx.ico%16,T
C:\Windows\System32\Shell32.dll@137%32,T
C:\Windows\System32\Shell32.dll@137%32,T
!myico.ico%48
!myico.ico%48,G
@ProvideX,T
<path>\pvxwin32.exe@ProvideX%16,T

Icon File Types
ProvideX accepts icons from the following file extensions:

.ico Does not support loading by resource name / resource number. You must
specify the filename (with or without path), ending in .ICO.

.exe, .dll, .ocx, .drv, .cpl, .scr (and any file type that the MS Windows API
allows a LoadImage from). You must specify a resource name or number.

.icl Icon Library (commonly used by Icon editing tools). You must specify a
resource number only (0 based). It ignores icon size specifications. If you
intend to use icons from a .ICL, we recommend that you convert it to a DLL
so that you may take advantage of any size specifications.

Enhanced Icons in INI Files
The [Config] section of your INI file, allows for an ICON= using any of the above
syntax for specifying the icon. If no filename is given or there is no leading @ sign,
then the name given is assumed to be a resource name from either the currently
loaded resource library (if any) or from the ProvideX executable; e.g.,

[Config]
Icon=myname ! Would be the icon "myname" in a resource library
Icon=@myname ! Same as above
Icon=mydll.dll@myapp

Enhanced Icons in Objects
When using enhanced icons in objects, the filename and syntax must be enclosed in
curly braces; e.g.,

BUTTON 10,@(40,2,8,3)="{pvxwin32.exe@ProvideX%32,T}"
BUTTON 10,@(40,2,10,2)="{@90w%32,T}"

Note: Specifying an icon in a INI file can impact your user license count for ProvideX,
as the icon name will be used for the Window Class Name, and ProvideX sessions with
different Class Names do not share their user licenses.

Note: Transparency effects are currently not supported in menus or popup menus.

ProvideX User’s Guide V8.30 Back

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

401

Index

@
!, exclamation point 32
’!Q’ parameter 67, 317
" , quotation marks 32, 36, 40
$, dollar sign 32, 41
%, percent sign 32, 37
' , back apostrophe 33
* , asterisk 32, 38, 124
’*1’ mnemonic 397
’*O’ mnemonic 397
+ , plus sign 38–39, 43
. period 62
/ or \ slashes (forward or back) 33, 38
: , colon 33
-: -> -} , prompts 33, 48
; semicolon 32, 62
> = < , relational operators 39, 43
? , question mark 33, 49
’@@’ mnemonic 395
@X() / @Y() functions 202
[] square brackets 33, 51
^ , caret 38
| , vertical bar 38
’ , apostrophe 32, 266
’4D’ mnemonic 148

A
ACS() function 40
activation keys 384
ActiveX 251
addition 39
add-on packages 11
ADDR directive 253

algebra, See numeric expressions
alternate spellings 15
AND() function 40
API, Application Program Interface 250
apostrophe (’) 32

back apostrophe (') 33
operator for controls/objects 266

application
API, Application Program Interface 250
Application Server hosting facility 242
RAD, Rapid Application Development 214
See also program

arc-cosine, ACS() function 40
’ARC’ mnemonic 205
arc-sine, ASN() function 40
arc-tangent, ATN() function 40
arguments, See called procedures
arithmetic, See numeric expressions
arrays

numeric arrays 37–38
string arrays 41–42

ASC() function 25
ASCII 23, 36, 40, 94
ASN() function 40
asterisk (*) 32, 38, 124
’AT’ mnemonic 396
ATN() function 40
AutoComplete MULTI_LINE feature 156
AUTO directive 50
auto-increment/decrement 38
AutoUpdater 248

B
back apostrophe (') 33
BEGIN directive 24

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

402

’BI’ mnemonic 93
BIN() function 256
binary 394
bitmaps/icons ??–200, 398–400

BITMAP output facility 234
’PICTURE’ mnemonic 203
internal/external images 398
Multiple Image Support 398
supported file types 398, 400
See also graphics, display objects

’Bn’ mnemonic 395
branch point, See statement reference
break

BREAK directive 79
BreakWindow debug facility 64
CONTINUE directive 80
control-break 13

’BR’ mnemonic 30
browser

embedded web browser 247
TLB, Type Library Browser 304–308

BUTTON directive 150
BYE directive 16, 24

C
calculation, See numeric expressions
Calendar Control MULTI_LINE feature 160
CALL directive 82
called procedures 81–86, 390

subprograms 82, 84
subroutines 81
user-defined functions 85

caret (^) 38
case

CASE, See SWITCH..CASE directive
case-sensitive 34
lowercase 31, 34, 48–49, 323
mixed case 34, 49
uppercase 31, 34, 48, 323

’CD’ parameter 125
’CE’ mnemonic 30
channels vi, 87

define as printer, DEFPRT directive 231
define as terminal, DEFTTY directive 393
opening/closing channels 87
See also files, devices

character
*E character-based editor 51
environment, character-based 16, 93

printing, character-based 219, 227
translation tables 397
See also text

CHART directive 195
CHECK_BOX directive 152–153
CHG() function 27
child window 141–144
’CH’ mnemonic 30
CHR() function 25
’CIRCLE’ mnemonic 205
class, in OOP Interface 350, 353
C Library, See PVKIO
client-server 239–248

Application Server hosting facility 242
deployment options 240
JavX thin-client 246–247
minimizing client-server risks 388
*NTHost/*NTSlave hosting facility 242
programming for thin-clients 243
TCP/IP 239
UltraFX thin-client 247–248
update services 248
WindX thin-client 245–246

clipboard 15
’CL’ mnemonic 30
CLOSE directive 88
’Cn’ mnemonic 396
colon (:) 33
COM Interface 261–308

accessing properties and methods 266–272
COM, Component Object Model 251
concepts and terminology 261
error handling 285
event-driven COM 294–300
extended objects 272–284
JavX COM support 301–303
referencing an object 263–265
releasing object reference 266
TLB, Type Library Browser 304–308

command
command line 13–14
command line editor 15, 48
command line utilities 16
Command mode 13
command mode 382
command recall 15, 50
prompt 13, 48
See directive, statement

CommandWindow debug facility 65
comments 21

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

403

exclamation point (!) 32
compilation 21

compiled vs interpreted language 19
errors during compilation 49

composite string 44–45
compound statements 22, 59
concatenation 43
console window 12, 138–139
controls

dynamic control object properties 137
graphical control objects 150–196
See also CTL value

conventions
in this documentation vi

coordinates vi
copy and paste 15
COS() function 40
’CPI’ mnemonic 223
’CP’ mnemonic 396
CREATE TABLE directive 106
Crystal Reports 325
’CS’ mnemonic 30
CTL values

CTL system variable 92
DEFCTL directive 93, 397
dynamic control properties 137
for taskbar notification icons 200
negative CTL definitions 93
SETCTL directive 93

’CU’ parameter 36
currency 36
CWDIR directive 25

D
data

accessing data via SQL 315
Data Dictionary Maintenance interface 214
data files 99–106
data integration (internal-external) 313–339
data types 34–45
DDE, Dynamic Data Exchange 251
*DICT/GENSQL utility 325
DSN, Data Source Name 327, 341
embedded data dictionary 117, 214, 324
encryption/passwording 383
external databases 320–339
formatting I/O data 90, 94
tables (SQL) 315
Views System 127, 339

date
DAY_FORMAT directive 28–29
DAY system variable 28–29

[DB2], DB2 support 321
DCOM, distributed COM 251, 309, 349
DDE, Dynamic Data Exchange 251
debugging 56–67

BreakWindow facility 64
CommandWindow facility 65
debug windows 62
structured SAVE directive 65
TraceWindow facility 63
WatchWindow facility 64

DEC() function 256
decimal point 36

FLOATING POINT directive 36
'DEFAULT' mnemonic 30, 223
DEF CLASS directive 356–357
DEFCTL directive 93, 397
DEF FN directive 85–86
DEF MSG directive 149
DEF OBJECT directive 263–265
DEFPRT directive 231, 391
DEFTTY directive 391, 393
DELETE directive 22, 24, 50
DELETE OBJECT directive 266
development tools

NOMADS 212–215
plug-in for Eclipse 54–55
ProvideX environment 47–67

devices
DEFTTY, define terminal driver 390–397
device drivers 230–233, 390–397
*DEV driver directory 391
opening/closing channel 87
*TTY terminal device utility 393
*UDEV driver directory 391

dialogue box
’DIALOGUE’ mnemonic 140–141
GET_FILE_BOX directive 146
See also windows

DIM() function 38, 41
DIM directive 37, 41, 44
DIRECT directive 101–102
directives 20

common directives 24–25
conventions regarding syntax vi
See also statement

directory
accessing directory files 112

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

404

CWDIR directive 25
LWD system variable 28
ProvideX system directories 16
search current directory 125

DISABLE directive 126
display objects 201–207

@X() / @Y() functions 202
images (bitmaps) 203
MXC() / MXL() functions 202
placement and size 201–202
shapes (line, circle, rectangle, etc.) 204–207
text and fonts 202–203

Distributed COM (DCOM) 251, 309, 349
division 38
DLL, Dynamic Link Library 250, 252–260

calling DLLs from ProvideX 252
DLL() function 252–260
pvxscript.dll 311

DLM system variable 28–29
dollar sign ($) 32, 41
’DP’ parameter 36
drag and drop in a grid 193
drivers

device drivers 390–397
print drivers and link files 230–233

DROP_BOX directive 178
DROP CLASS directive 361
’DROP’ mnemonic 145
DROP OBJECT directive 262, 363
DSN, Data Source Name 327, 341
DTE() function 26
DUMP directive 24
dynamic

DDE, Dynamic Data Exchange 251
DLL, Dynamic Link Library 250, 252–260
dynamic control properties 137

E
echo, See input/output (I/O) operations
Eclipse platform 54–55

Rich Client Platform (RCP) 247
EDIT directive 49

’ , back apostrophe shortcut 33
editing

*E character-based editor 51
*IT program editor 52
command line editor 48
editing program code 47–55

EFF (Enhanced File Format) 106

’EI’ mnemonic 93
ELSE, See IF..THEN..ELSE directive
embedded

bitmaps 32
data dictionary 117, 214, 324
Embedded I/O Procedures 118–122

ENABLE directive 126
encryption, See security
END directive 16, 25, 312
endless loops 60
Enhanced File Format (EFF) 106
ENTER directive 83, 120
entry point 33
EOM system variable 28, 30
EPT() function 40
ERASE directive 99
error

*ERROR$ program 60
’ES’ parameter 57
codes and messages 56–57
endless loops, untrapped errors 60
ERR() function 57
ERR= option 58–59
ERROR_HANDLER directive 60
error handling procedures 56–67
ERR system variable 28, 30, 57, 59
ERS system variable 57
extended error information 57
MSG() function 57
OS error codes 57
retrying an error 59
SETERR directive 58–60
statement error indicator 49
subroutines for error handling 58
system errors 60
tracing execution of program 61
trapping errors 58

ESCAPE directive 13, 62
escape key 67

SETESC directive 67
events

GUI events 131
See CTL values

exclamation point (!) 32
execution

conditional execution 76–77
Execution mode 13
order of execution 69
RUN directive 24
stack 70
terminate, END, STOP directives 25

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

405

EXIT directive 82, 120
EXITTO directive 80
EXP() function 40
exponentiation 38
expressions, syntax conventions of vi
external components 249–312

ActiveX 251
API, Application Program Interface 250
COM Interface 251, 261–308
DCOM, distributed COM 251, 309, 349
DDE, Dynamic Data Exchange 251
DLL, Dynamic Link Library 250, 252–260
OCX, OLE Control eXtension 251
OLE, Object Linking and Embedding 251
terminology 250

external databases 320–339
EXTRACT directive 108

F
’FF’ mnemonic 30
FFN() function 26–27
FI, See alternate spellings
FIB() function 110
FID() function 110
fields 98
FILE directive 99
files

ASCII format 23
CREATE TABLE directive 106
creating, deleting, renaming files 99
DIRECT directive 101
Embedded I/O Procedures 118–122
encryption/passwording 383
Enhanced File Format (EFF) 106
ERASE directive 99
EXTRACT directive 108
FILE directive 99
file types 99–106
FIND directive 108
flat files 99, 126
foreign files 126
image file formats 398
INDEXED directive 100–101
input and output directives ??–113
keyed, DIRECT files 102
keyed, FLR/VLR files 99, 101
keyed, SORT files 103
keyed files 101–106, 331–334
KNO (file access key) 109
LOCK directive 113

multi-keyed, KEYED files 103–106
naming conventions 98
opening/closing files 87
prefix file 125
ProvideX file system 97–127
PURGE directive 99
READ directive 107
records and fields 98
REFILE directive 99
REMOVE directive 108
RENAME directive 99
searching file names 122–126
SERIAL directive ??–9899–100
WRITE directive 108

’FILL’ mnemonic 204
FIN() function 28, 110, 388
FIND directive 108
’FL’ parameter 31
FLR (Fixed-Length Records) files 99, 101
’Fn’ mnemonic 395
’FONT’ mnemonic 202, 223
FOR..NEXT directive 65, 74–75
format

currency 36
decimal point 36
formatting I/O data 90, 94
masks 90, 94

fractional values, See numeric values
full-screen editors 51–53
functions

conventions regarding syntax vi
FUNCTION directive 358–360
global functions 86
multi-line function procedure 86
system functions 25–28
user-defined functions 85–86

’FU’ parameter 31

G
’GD’ mnemonic 396
GET_FILE_BOX directive 146
global

search and replace 33
user-defined functions 86
variables 35

GOSUB directive 81
ON..GOSUB directive 79

GOTO directive 72–73
ON..GOTO directive 79

’GOTO’ mnemonic 144

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

406

graphical control objects 150–196
BUTTON directive 150
CHART directive 195
CHECK_BOX directive 152–153
DROP_BOX directive 178
dynamic control properties 137
GRID directive 180–193
H_SCROLLBAR directive 194
LIST_BOX directive 166–176
MENU_BAR directive 162–164
MULTI_LINE directive 155–161
POPUP_MENU directive 165
RADIO_BUTTON directive 154–155
TRISTATE_BOX directive 153
V_SCROLLBAR directive 194
VARDROP_BOX directive 179
VARLIST_BOX directive 177

graphical user interface, See GUI
graphics

BITMAP output facility 234
bitmaps/icons ??–200, 203, 398–400
graphical printing 226–227
image file types 398
internal/external images 398
Multiple Image Support 398
shapes (line, circle, rectangle, etc.) 204–207
See display objects

GRID directive 180–193
assigning a row of data 188
cell types 183
drag and drop 193
formatting a grid 181
loading a grid 186
named columns 186
reading values from a grid 189
referencing rows, columns, cells 182
retrieving data 190

GUI
*IT GUI-based program editor 52
development in ProvideX 129–215
display objects 201–207
general design principles 132
NOMADS GUI development tools 212–215
ProvideX utilities 17, 52
rich GUI environment (UltraFX) 247
terminology 130
text and fonts 202–203
See also windows, thin-clients

H
H_SCROLLBAR directive 194

hexadecimal
values in ProvideX 32, 41

HFN system variable 28–29
HSH() function 384
HTML output facility 233

I
icon

enhanced icon files 399–400
file types 400
ProvideX Windows icon 12
taskbar notification 197–200
See also bitmaps/icons

IDispatch interface 261
IF..THEN..ELSE directive 65, 77
images, See bitmaps, display objects
IND() function 110
INDEXED directive 100–101
INI file 67, 400

See ProvideX Installation manual
input/output (I/O)

Embedded I/O Procedures 118–122
file I/O operations 107–118
input and output directives ??–113
IOLists 114–118
PVKIO, file I/O library 343
user I/O operations 94–96

INPUT directive 88–93
CTL values 92
formatting entered values 90
hiding user input (echo) 88
INPUT EDIT directive 89
input validation 91
mnemonic instructions 30
numeric validation 92
OBTAIN directive 88
pre-load input buffer 89
size, length of input 90
string validation 91
to variables 34

InstallShield 248
instruction, See statement
integers, See numeric values
interactive/interface, See GUI, input/output
interpreted language 19, 22
INVOKE directive 32
IOLIST directive

for composite strings 44–45
for I/O parameter list 114–118

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

407

variable IOLists 115
IOR() function 40
*IT program editor 52–53

J
JavX, Java-based thin-client 246–247

COM support 301–303
’JC’ mnemonic 229
’JD’ mnemonic 229
’JL’ mnemonic 229
’JN’ mnemonic 229
’JR’ mnemonic 229
’JS’ mnemonic 229
JUL() function 26

K
KEC() function 110
KEF() function 110
KEL() function 110
KEN() function 110
KEP() function 110
KEY() function 110
keyboard

CTL values 92–93
shortcuts 14
See also console, terminal

KEYED directive 103–106
keywords, See syntax
’KF’ parameter 106
KNO (file access key) 109

L
language 19–45

compiled vs interpreted 19, 22
See also syntax

LAOD, See alternate spellings
Large File Support (LFS) 106
’LC’ parameter 31, 49
’LD’ parameter 31
’LE’ parameter 31, 49
LET directive 14, 20, 24, 31, 34, 59
LFA system variable 28, 30
’LF’ mnemonic 30
LFO system variable 30
LFS (Large File Support) 106
libraries

DLL, Dynamic Link Library 250, 252–260
PVKIO, file I/O library 343
resource library 398

library
XML Library 345

licensing 384
LIKE directive 360
line 21

auto-numbering 50
deleting lines 50
labels 33, 73
numbers 21, 47, 72
renumbering 50
See also statement

’LINE’ mnemonic 206
link files 230–233
Linux, See UNIX/Linux
list boxes

LIST_BOX directive 166–176
VARLIST_BOX directive 177
DROP_BOX directive 178
VARDROP_BOX directive 179
examples of all styles 167–168
formatted style 169
list view style 169
loading items into a list box 170–171
report view style 169
selecting items from a list box 171–173
standard (no formatting) 166
state indicators 173–176
tree view style 170

LIST directive 24, 47–49
LIST EDIT 20, 48
slash \ shortcut 33

literals 36
LOAD CLASS directive 354, 361
LOAD directive 22–24, 31, 51
LOCAL directive 35, 358
locking

file locking (LOCK directive) 113
record locking (EXTRACT directive) 113

LOG() function 40
log file 66
logical operators 39–40
logical statement references 73
loop

BREAK directive 79
condition-controlled loop 76
CONTINUE directive 80
controlled loop structures 74–77
count-controlled loop 74

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

408

EXITTO directive 80
flow overrides 79–80
FOR..NEXT directive 74
handling endless loops 60
overriding a loop 79–80
POP directive 80
REPEAT..UNTIL directive 76
WHILE..WEND directive 76

lowercase 31, 34, 48–49, 323
’LPI’ mnemonic 223
LSIT, See alternate spellings
’LU’ parameter 100
LWD system variable 28–29

M
matrices 37
MAX() function 40
’LC’ parameter 34
’MC’ parameter 34, 49
MEM() function 256
’ME’ mnemonic 93
MEMORY logical file 111
menus

MENU_BAR directive 162–164
POPUP_MENU directive 165

messages
errors, warnings 56–57
popup message box 147–149

methods, See COM Interface, OOP Interface
Microsoft Windows 12

WINPRT/*WINDEV* printing 221–225
clipboard 15
IDispatch interface 261
ProvideX-based Windows scripts 311
Registry 253
system tray 197
system tray icon 197–200
taskbar notification area, icons 197
WindX thin-client for Windows 245–246
See also external components

MID() function 42
MIN() function 40
minus sign (-) 39
mixed case 34, 49
mnemonics 30–31

conventions regarding syntax vi
defined via MNEMONIC directive 96, 396

’MN’ mnemonic 93
MOD() function 40

modes of operation 13
modulus 38
mouse

CTL values 92–93
functionality in ProvideX 15
See also GUI, graphical control objects

MSE system variable 28, 30
MSG() function 57, 149
MSGBOX directive 147–149
MULTI_LINE directive 155–161

AutoComplete 156
Calendar Control 160

Multiple Image Support facility 398
multiplication 38
MXC() / MXL() functions 202
’MX’ parameter 148
[MYSQL], MYSQL support 321

N
navigation tips vi
’NE’ parameter 31
NEW() function 362–363
NEXT, See FOR..NEXT directive
NEXT RECORD, See SELECT.. directive
’NL’ parameter 31
NOMADS 55, 212–215, 386
NOT() function 26–27, 40
notification icon 197
’NR’ parameter 36
*NTHost/*NTSlave hosting facilities 242
NUL() function 26–27
NUM() function 26
numeric expressions 36–40

addition 39
arrays 37–38
division 38
exponentiation 38
fractional values 37
increment-decrement 38
integers 37
logical operators 39–40
matrices 37
modulus 38, 40
multiplication 38
numeric lists 37
relational operators 39
subtraction 39
trigonometry 40

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

409

O
objects

classes 350
COM, Component Object Model 251
external objects 249–312
in object-oriented programming 350
OLE, Object Linking and Embedding 251
See also OOP Interface

OBTAIN directive 88
[OCI], Oracle Call Interface 321
OCX, OLE Control eXtension 251
ODBC 67, 215, 240

[ODB], Open Database tag 321
ProvideX ODBC Driver 340–342

OLE, Object Linking and Embedding 251
OLE DB 321
OLE Server 11, 309–312, 349

ON..GOSUB directive 79
ON..GOTO directive 79
OOP Interface

object-oriented programming 347–379
classes and objects 350, 353
creating, accessing objects 354
DEF CLASS directive 356–357
DROP CLASS directive 361
DROP OBJECT directive 363
FUNCTION directive 358–360
lexicon 350
LIKE directive 360
LOAD CLASS directive 361
LOCAL directive 358
NEW() function 362–363
OPEN OBJECT directive 363
overview of ProvideX OOP 353–355
PRECISION directive 361
PROGRAM directive 360
properties and methods 351, 354
PROPERTY directive 357–358
REF() function 363
RENAME CLASS directive 362
STATIC directive 362

OPEN directive 87
for file I/O operations 107, 126

OPEN OBJECT directive 363
OpenSSL 384
operating system

64-bit 106
error codes 57

operators
apostrophe operator 266

arithmetic operators 38
conventions in this documentation vi
logical operators 39
precedence 39
relational operators 39

’OPTION’ mnemonic 63
Oracle Call Interface, [OCI] 321
output, See input/output (I/O)

P
parameters

conventions regarding syntax vi
PASSWORD directive 383–384
paste 15
’PC’ parameter 31
PDF output facility 235
’PEN’ mnemonic 204
percent sign (%) 32, 37
performance 21
PERFORM directive 84
period (.) 62
’PICTURE’ mnemonic 203
’PIE’ mnemonic 205
plug-in for Eclipse 54–55
plus sign (+) 38–39, 43
’POLYGON’ mnemonic 206
POP directive 80
’POP’ mnemonic 145
POPUP_MENU directive 165
PRC() function 40
PRECISION directive 36, 361
pre-compiled (tokenized) 22
PREFIX directive 122–125

DISABLE/ENABLE prefixes 126
PREFIX FILE 325–327

PRINT directive 94–96, 217–238
? question mark shortcut 33
display function results 26
displaying system variables 29
formatting I/O data 94
graphical printing 226–227
GUI output 134–211
mnemonic instructions 30, 96
output positioning coordinates 95
output to a display device 94–96
output to a printer 217–238
unformatted output 95

printing 217–238
BITMAP output 234

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

410

character-based 219, 227
DEFPRT, define print driver 390
form feeds 233
HTML output 233
logical printers 233–235
PDF output 235
preview facility, *VIEWER* 234
print drivers and link files 230–233
Report Writer 236
sending raw instructions 228
spooler 233
under WindX, JavX, UltraFX 238
WINPRT/*WINDEV* printing 221–225

PRM system variable 28–29
program 19–23

ASCII format 23
auto-numbering 50
called procedures 81–86
comments 21
creating/modifying 47–55
debugging 62–67
decision structure 77–79
errors 49, 56–67
executing a program file 23
flow control mechanisms 72–80
handling endless loops 60
LOAD into memory 24
loop structures 74–77
numberless programming 47
object-oriented programming 347–379
order of execution 69
prefix assignment 123
PROGRAM directive 360
registration/activation system 384
saving a program file 22
search and replace 51
stack 70
stepping through code 62, 65
subprogram 82–85
tracing a program 61, 63
transfer control 58
unstructured programming 72–73

prompt 13, 33, 48
properties

COM properties and methods 266–272
dynamic control properties 31, 137
OOP properties and methods 351, 354
PROPERTY directive 357–358

ProvideX 9
console 12, 138–139
exiting a session 16
for UNIX, Linux 13

for Windows 12
installation 11
native file system 97–127
product options 10
programs 20
ProvideX.Script, OLE Server 309–312
search rules 125
syntax vi
TLB, Type Library Browser 304–308
utilities 16

PTH() function 26
PURGE directive 99
PVKIO, file I/O library 343
pvxcom.exe, OLE Server 309–312
PvxDocs 55
pvxscript.dll 311

Q
question mark (?) 33, 49
QUIT directive 16, 24
QUO system variable 28–29
quote characters

" , double 32, 36, 40
’ , single (apostrophe) 32

R
RAD, Rapid Application Development 214
RADIO_BUTTON directive 154–155
RCD() function 110
RCP, rich client platform 247–248
READ directive 107
read-only

literal values 36
records 98

MEMORY logical file 111
EXTRACT RECORD directive 111
FIND RECORD directive 111
Fixed-Length Records (FLR) 99, 101
input and output directives ??–113
READ RECORD directive 111
SELECT..FROM..NEXT RECORD directive 110
Variable-Length Records (VLR) files 99, 102
WRITE RECORD directive 111

REC system variable 30
’RECTANGLE’ mnemonic 206
'RED' & '_RED' mnemonics 30
REF() function 363
REFILE directive 99

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

411

relational operators 39
RELEASE directive 16
remainder 38
remote processing, [RPC] tag 240
REMOVE directive 108
RENAME CLASS directive 362
RENAME directive 99
RENUMBER directive 50
REPEAT..UNTIL directive 65, 76
report view list boxes 169
Report Writer 10, 236
reserved words 35
resource library 398
RETRY directive 59
RETURN directive 82, 84, 86
rich client platform (RCP) 247–248
’RM’ mnemonic 30, 395
’RN’ parameter 36
RNO() function 98, 110, 335
rounding

ROUND directive 36
[RPC] remote processing control 240
RUN directive 22–24

S
’+S’ & ’-S’ mnemonic 229
SAVE directive 25

SAVE EDIT 23
SAVE FILE 234
structured SAVE 65

scientific notation 36
screen, See input/output (I/O) operations
scripts
pvxscript.dll 311

scroll
define region (’SCROLL’ mnemonic) 395
H_SCROLLBAR directive 194
reset (’SR’ mnemonic) 143
V_SCROLLBAR directive 194

search
Eclipse search utility 55
file, directory search 122–126
program search and replace 32, 51
rules, ProvideX defaults 125

security 382–389
HSH() function 384
minimizing client-server risks 388
NOMADS Security Manager 386
passwording and encryption 383–384

restricting command mode access 382
software registration/activation 384
SSL support 386–388

SELECT..FROM..NEXT RECORD directive 110
semicolon (;) 32, 62
SEP system variable 28, 30
SERIAL directive ??–9899–100
server

*NTHost/*NTSlave hosting facility 242
Application Server hosting facility 242
OLE Server 309–312, 349
See also client-server

session 11
exiting 16
See also Command mode

SETCTL directive 93
SETDEV directive 119
SETERR directive 58–60
SETESC directive 67, 382
SETTRACE directive 61
shapes, See display objects
shortcuts

Command mode 14
for step operations 62
keyboard 14

’SHOW’ mnemonic 144
SIN() function 40
slashes (/ or \) 33, 38
’SL’ parameter 15
SORT directive 103
’SP’ mnemonic 396
SQL, Structured Query Language 67, 313–339

ProvideX translated to SQL 316
SQL embedded in ProvideX 319

SQR() function 40
square brackets [] 33, 51
’SR’ mnemonic 143
SSL, Secure Socket Layer 386–388
SSN system variable 28–29
’SS’ parameter 65
stack 70

POP directive 80
STK() function 83
See also loops, subroutines

START directive 22, 24
state indicators in list boxes 173–176
statement 20

auto-numbering 50
called procedures 81–86

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

412

compound statements 22, 59, 61
conventions regarding syntax vi
decision, conditional statements 77–79
error indicator 49
flow control statements 72–80
line numbers 20, 47
logical statement references 73
loop statements 74–77
numberless statements 47
renumbering 50
separators (; semicolon) 32
statement reference 33, 58, 72–74
See also line, directive

STATIC directive 362
step operations 62, 65
STK() function 26, 83
STOP directive 16
STR() function 26, 95, 229
strings 40–45

arrays 41–42
comparison operators (> = <) 43
composite 44–45
concatenation 43
line labels 33
literals 32, 36, 40
string validation 91
substring 42

structured SAVE, ’SS’ parameter 65
subprograms 82–85

CALL directive 82
flow overrides 79–80
passing arguments 85
PERFORM directive 84
stack 83

subroutines 81
EXITTO directive 80
flow overrides 79–80
for error handling 58
for handling CTL vlaues 93
GOSUB directive 81
POP directive 80
RETURN directive 82
stack 70

substrings 42
subtraction 39
SWITCH..CASE directive 65, 78
SWP() function 256
symbols 24

currency 36
decimal point 36

syntax 19–45

conventions vi
directives 24–25
errors 56–57
mnemonics 30–31
symbols 32–33
system function 25
system parameters 31
system variables 28

system
current state information 66
GUI utilities 16–17, 52
system-detected errors 56–57
system errors 60
system functions 25–28
system parameters 31
system variables 28–30
utilities 16
Windows system tray 197–200

T
tables 315
TAN() function 40
taskbar notification area (Windows) 197
TCB() function 26, 57
[TCP], TCP/IP interface 239–240
terminal 391
terminate session, See exiting
text

’FONT’ mnemonic 202, 223
’TEXT’ mnemonic 203
ASCII format 23
pasting 15
TXH() / TXW() functions 203

THEN, See IF..THEN..ELSE directive
thin-clients 243–248

JavX, Java-based thin-client 246–247
programming for thin-clients 243
UltraFX, Eclipse RCP thin-client 247–248
WindX, Windows-based thin-client 245–246
See also client-server, windows, GUI

third-party software 249–312
’TH’ parameter 36
tick or apostrophe operator (’) 266
TIM system variable 28–29
TLB, Type Library Browser 304–308
tokenized code 19
tools, See utilities
tracing a program 61

TraceWindow facility 63

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

413

trapping errors 58
tree view list boxes 170
trigonometry 40
TRISTATE_BOX directive 153
*TTY utility 393
TXH() / TXW() functions 203

U
*UCK utility 397
*UCL utility 232
*UDEV driver directory 391
UID system variable 382
UltraFX, Eclipse RCP thin-client 247–248
UNIX/Linux 13

device drivers 390
DLL calls in UNIX/Linux 259

UNTIL, See REPEAT..UNTIL directive
update services 248
uppercase 31, 34, 48, 323
user

input/output (I/O) operations 94–96
user-defined functions 85–86

USER_LEX directive 15
utilities 16

*DICT/GENSQL data definition utility 325
GUI utilities 17
NOMADS 212–215
OLE Server 309–312, 349
plug-in for Eclipse 54–55
search and replace 32–33
TLB, Type Library Browser 304–308
*TTY terminal utility 393
*UCK keyboard utility 397
*UCL link file utility 232

V
V_SCROLLBAR directive 194
values, See strings, numeric values
VARDROP_BOX directive 179
variables 34–35

conventions regarding syntax vi
global variables 35
integers only 37
local variables 35
monitored while processing 64
numeric validation 92
numeric variables 37
string validation 91

string variables 32, 41
variable IOLists 115
See system variables

VARLIST_BOX directive 177
VIEWER print preview facility 234
Views 10
Views System 127, 339
VLR (Variable-Length Records) 99, 102
VPN, Virtual Private Networks 389

W
WAIT directive 59
’WA’ mnemonic 141–144
WatchWindow debug facility 64
[WDX], client-side action 244
web browser 247
WEND, See WHILE..WEND directive
’WG’ mnemonic 144
WHILE..WEND directive 65, 76
WHO system variable 28–29, 382
wildcard characters (*) 124
windows

*WINAPI utility 145
’DIALOGUE’ mnemonic 140–141
’SCROLL’ mnemonic 395
’WINDOW’ mnemonic 141–144, 395
child window 141–144
closing, removing 145
controlling display, focus 144
dockable-stackable-moveable 247
file selection dialogue 146
MSGBOX directive 147–149
popup message box 147
ProvideX console 138–139
split panes 247
See also Microsoft Windows, GUI, thin-clients

WindX thin-client 245–246
DLL calls via WindX 259
prinitng via WindX 238
tracing, error logging 64
using MSGBOX window 149

WINPRT/*WINDEV* printing 221–225
WINPRT_SETUP directive 224
WRITE directive 108
’WR’ mnemonic 145
’WX’ mnemonic 395

ProvideX User’s Guide V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

414

X
’XI’ parameter 31, 113
XMI 55
*XML Interface 344–345
XOR() function 40
’XT’ parameter 31

Z
ZLib compression 105

	Menu
	Contents
	Preface
	Using this Documentation
	Conventions
	Chapter Outlines

	1. Getting Started
	About ProvideX
	Product Options
	Online Resources, Documentation, and Training

	Installation and Setup
	ProvideX Environment
	Modes of Operation
	Command Line Editing
	Command Line Recall
	Using the Mouse (Windows)
	Exiting a ProvideX Session

	System Utilities
	Command Line Utilities
	Graphical Utilities
	NOMADS

	2. Language Elements
	Background
	Directives, Statements, and Programs
	Statement Syntax
	Saving, Loading, and Executing a Program

	Primary Syntax Elements
	Directives
	System Functions
	System Variables
	Mnemonics
	System Parameters
	Control Object Properties
	Other Syntax Elements

	Data Types, Literals, and Variables
	Variables
	Literals
	Numeric Values
	String Values
	Composite Strings

	3. Development Tools
	Writing and Modifying Program Code
	Command Line Editing
	Full-Screen Editors

	ProvideX Plug-in for Eclipse
	About the Eclipse Platform
	About the ProvideX Plug-in

	Error Handling and Debugging
	Error Codes and Messages
	Error Processing
	Tracing a Program
	Stepping Operations
	Windows Debugging Environment
	Structured SAVE
	Additional Debugging Procedures/Facilities

	4. Programming Constructs
	General Concepts
	Order of Execution
	Changing the Sequence
	Input/Output Operations
	Modular Programming Facilities
	Advanced Concepts

	Flow Control
	Statement References
	Loop Structures
	Decision Structures
	Flow Overrides

	Called Procedures
	GOSUB
	CALL
	PERFORM
	DEF FN

	Basic Input/Output
	Opening/Closing Devices and Files
	Input Statements
	Output Statements

	5. File Handling
	Data Files
	Records and Fields
	Creating, Deleting, and Renaming Data Files
	Serial
	Indexed
	Keyed
	Multi-Keyed Files
	Enhanced File Format

	Processing Data Files
	File Processing Directives
	File Processing Functions
	Processing Records
	Accessing Directory Files
	File Locking - Reserving a File for Exclusive Use
	Record Locking - Sharing Critical Information
	Input/Output Parameters

	Embedded I/O Procedures
	Implementation
	Pre-Defined Entry Points
	Execution Environment
	Changing Return Values
	Sample Code

	File Naming Conventions
	Prefix Processing
	ProvideX Search Rules

	Foreign File Access
	Views System

	6. Graphical User Interfaces
	Concepts and Terminology
	GUI Terminology
	Event-Driven Methodology
	General Design Principles
	GUI Development in ProvideX
	Syntax Elements

	Interface Windows
	ProvideX Console Window
	Dialogue Window
	Child Window
	Handling Multiple Windows
	Special Function Windows
	GET_FILE_BOX - File Selection Dialogue
	MSGBOX - PopUp Message Box

	Control Objects
	Button
	Check Box
	Tristate Box
	Radio Buttons
	Multi-Line
	Menu Bar
	Popup Menu
	List Box
	Variable List Box
	Drop Box
	Variable Drop Box
	Grid
	Scrollbars
	Chart

	Taskbar Notification Icon
	Display Objects
	Placement and Size
	Text
	Images
	Shapes
	Display Object Sampler

	Example Programs
	NOMADS
	Development Environment
	NOMADS Engine
	Dictionary-Based Development

	7. Printing
	Printing Options
	Character-Based versus Graphical Printing
	PRINT Destinations
	Printing in MS Windows
	Selecting a Printer
	Initializing a Windows Printer
	Setting Up Defaults
	Aborting a Windows Print Job

	Graphical Printing
	Character-Based Printing
	Standard Printing
	Raw Printing
	Fixed-Pitch Fonts
	Proportionally-Spaced Fonts

	Print Drivers and Link Files
	Pages and Form Feeds in Printing

	Logical Printers
	HTML Output - *HTML*
	Virtual Bitmap - *BITMAP*
	Print Preview - *VIEWER*
	PDF Output - *PDF*

	Report Writer
	Printing via Thin-Clients

	8. Client-Server
	Background
	Client-Server Deployment Options
	Choosing the Right Configuration

	Hosting Facilities
	*NTHost/*NTSlave
	Application Server

	Thin-Clients
	Programming for Thin-Clients
	WindX
	JavX
	UltraFX
	Upgrading Client Software

	9. External Components
	Concepts and Terminology
	API
	DLL
	DDE
	OLE
	OCX
	ActiveX
	COM

	Calling DLLs from ProvideX
	ProvideX DLL Interface
	Loading DLLs into Memory
	Passing Values in a DLL Call
	Converting Data To/From Local Representation
	Examples
	DLL Calls via WindX
	Working with DLL Calls in UNIX/Linux

	ProvideX COM Support
	Referencing a COM Object
	Releasing an Object Reference
	Accessing an Object’s Properties and Methods
	Extended Properties and Methods
	Extended Objects
	COM Error Handling
	Advanced Usage
	Comparisons with Visual Basic
	Examples

	Event-Driven COM
	Linking to an OOP Object
	Accessing a Specific Event via an OOP Object
	Handling Events
	Event Templates
	Errors in Events
	Generating a CTL Event for a COM Event

	JavX COM Support
	Array Support
	"No Argument" Constructor
	Event Support
	Using COM in JavX - Example

	ProvideX Type Library Browser
	Using the TLB
	Creating an Event Template
	Retrieving a Loaded COM Object’s Type Library Information

	ProvideX OLE Server
	Registration of the OLE Server
	Using ProvideX.Script
	ProvideX as Windows Script

	10. Data Integration
	Overview
	Introduction to SQL
	SQL Terminology
	Data Access Using SQL
	How ProvideX Translates to SQL
	Using SQL Directly Within ProvideX

	External Databases
	Selecting a Database Type
	Creating the Database
	Creating Tables
	Creating the Prefix File
	Conversion Process
	Other Considerations

	ProvideX ODBC
	About ODBC
	Implementation

	PVKIO - ProvideX I/O Library
	XML Content
	About XML
	ProvideX XML Interface

	11. Object-Oriented ProvideX
	Why use Object Oriented Programming?
	Consistency in Design and Code
	Data Protection
	Control and Separation of Code
	Access from Outside the Application

	General Concepts and Terminology
	Objects
	Classes
	Object Identifiers
	Properties
	Methods
	Encapsulation
	Inheritance
	Aggregation
	Collections
	Polymorphism

	ProvideX OOP Interface
	Overview
	DEF CLASS Directive
	PROPERTY Directive
	LOCAL Directive
	FUNCTION Directive
	LIKE Directive
	PROGRAM Directive
	PRECISION Directive
	LOAD CLASS Directive
	DROP CLASS Directive
	RENAME CLASS Directive
	STATIC Directive
	NEW() Function
	REF() Function
	DROP OBJECT Directive
	OPEN OBJECT Directive

	Putting It All Together
	Company Class
	Customer Class
	Supplier Class
	Additional Classes

	A. Appendix
	Overview
	Security Features
	Restricting Access to Command Mode
	Password Protection
	Hash Function
	Software Registration and Activation
	NOMADS Security Manager
	Secure Socket Layer (SSL)
	Minimizing Client-Server Risks

	Device Drivers
	Defining Devices
	*DEV and *UDEV Directories
	Printer Devices
	Terminal Devices

	Handling Images and Icons
	Internal vs External Images
	Recognized File Types
	Sizing and Placement
	Enhanced Icons

	Index
	@
	A
	activation keys
	ActiveX
	addition
	ADDR Directive
	API Application Program Interface
	arrays numeric
	arrays string
	AUTO Directive
	AutoUpdater

	B
	BEGIN Directive
	BIN() Function
	BITMAP image facility
	bitmaps
	BREAK Directive
	BUTTON Directive
	BYE Directive

	C
	Calendar Control
	CALL Directive
	CASE Directive
	channel number
	CHART Directive
	CHECK_BOX Directive
	CHG() Function
	CHR() Function
	client-server
	clipboard
	CLOSE Directive
	COM interface
	Command Mode
	composite strings
	compound statements
	CONTINUE Directive
	CREATE TABLE Directive
	CTL System Variable
	CWDIR Directive

	D
	data dictionary
	data external
	data processing and databases
	DAY System Variable
	DAY_FORMAT Directive
	DB2 support
	DCOM distributed COM
	DDE Dynamic Data Exchange
	debugging procedures
	DEC() Function
	DEF CLASS Directive
	DEF FN Directive
	DEF MSG Directive
	DEF OBJECT Directive
	DEFCTL Directive
	DEFPRT Directive
	DEFTTY Directive
	DELETE Directive
	DELETE OBJECT Directive
	dialogue window
	DIM Directive
	DIM() Function
	DIRECT Directive
	directives
	DISABLE Directive
	division
	DLL Dynamic Link Library
	DLM System Variable
	DROP CLASS Directive
	DROP OBJECT Directive
	DROP_BOX Directive
	DSN Data Source Name
	DTE() Function
	DUMP Directive

	E
	Eclipse platform
	EDIT Directive
	editors full screen
	EFF Enhanced File Format
	Embedded IO
	ENABLE Directive
	encryption
	END Directive
	ENTER Directive
	ERR System Variable
	errors and messages
	ERR() Function
	ERS System Variable
	ESCAPE Directive
	events
	Execution Mode
	EXITTO Directive
	exponentiation
	external components
	EXTRACT Directive

	F
	FFN() Function
	FIB() Function
	FID() Function
	Fields and Records
	FILE Directive
	file handling in ProvideX
	FIND Directive
	FIN() Function
	FLR Fixed Length Records
	FOR Directive
	functions

	G
	GET_FILE_BOX
	global functions
	global variables
	GOSUB Directive
	GOTO Directive
	graphical controls
	graphical objects and images
	GRID Directive
	GUI Graphical User Interfaces

	H
	hexadecimal
	HFN System Variable
	HSH() Function
	HTML Output Facility
	H_SCROLLBAR Directive

	I
	icons
	IDispatch Interface
	IF Directive
	images
	INDEXED Directive
	IND() Function
	INPUT Directive
	INPUT EDIT Directive
	Input/Output operations
	INVOKE Directive
	IOLIST Directive

	J
	JavX
	JUL() Function

	K
	KEC() Function
	KEF() Function
	KEL() Function
	KEN() Function
	KEP() Function
	keyboard shortcuts
	KEYED Directive
	KEY() Function

	L
	language elements
	LET Directive
	LFA System Variable
	LIKE Directive
	line numbers and line labels
	link files
	Linux
	LIST Directive
	LIST_BOX Directive
	LOAD CLASS Directive
	LOAD Directive
	LOCAL Directive
	LOCK Directive
	logical operators
	loop structures
	LWD System Variable

	M
	memory file
	MEM() Function
	MENU_BAR Directive
	messages and errors
	methods in OOP
	MID() Function
	MNEMONIC Directive
	mnemonics
	modulus
	MSE System Variable
	MSGBOX Directive
	MSG() Function
	multi-keyed file
	Multiple Image Support
	multiplication
	MULTI_LINE Directive
	MXC()/ MXL() Functions
	MySQL support

	N
	NEW() Function
	NEXT RECORD Directive
	NOMADS
	NOT() Function
	NTHost and NTSlave
	NUL() Function
	NUM() Function

	O
	OBTAIN Directive
	OCI Oracle Call Interface
	OCX OLE Control eXtension
	ODB external ODBC access
	ODBC driver
	OLE Object Linking and Embedding
	OLE Server
	ON..GOSUB/ON..GOTO Directives
	OOP Object Oriented Programming
	OPEN Directive
	OPEN OBJECT Directive
	OpenSSL
	output statements

	P
	PASSWORD Directive
	PDF generator
	PERFORM Directive
	POP Directive
	POPUP_MENU Directive
	PRECISION Directive
	PREFIX Directive
	PREFIX FILE Directive
	PRINT Directive
	Print Preview facility
	PRM System Variable
	PROGRAM Directive
	properties and methods in OOP
	properties for GUI controls
	PTH() Function
	PURGE Directive
	PVKIO file IO library
	PvxScript

	R
	RADIO_BUTTON Directive
	RCD() Function
	RCP Rich Client Platform
	READ Directive
	Records and Fields
	REFILE Directive
	REF() Function
	relational operators
	RELEASE Directive
	REMOVE Directive
	RENAME CLASS Directive
	RENAME Directive
	RENUMBER Directive
	REPEAT Directive
	Report View list boxes
	Report Writer
	RETRY Directive
	RETURN Directive
	RNO() Function
	ROUND Directive
	RPC Remote Processing Control
	RUN Directive

	S
	SAVE Directive
	SAVE EDIT Directive
	SAVE FILE Directive
	scientific notation
	scroll region
	scrollbars
	search and replace in programs
	search prefixes
	security
	SELECT Directive
	SEP System Variable
	SERIAL Directive
	SETCTL Directive
	SETDEV Directive
	SETERR Directive
	SETESC Directive
	SETTRACE Directive
	SORT Directive
	SQL Structured Query Language
	SSL Secure Socket Layer
	SSN System Variable
	START Directive
	state indicators in list boxes
	statement numbering
	statement references
	statements
	STATIC Directive
	stepping operations
	STK() Function
	STOP Directive
	string values
	Structured SAVE
	STR() Function
	subprograms
	subroutines
	substrings
	subtraction
	SWITCH Directive
	SWP() Function
	syntax elements
	system functions
	system parameters
	system utilities
	system variables

	T
	tables in SQL
	TCB() Function
	TCP/IP support
	terminal device drivers
	thin clients
	TIM System Variable
	TLB Type Library Browser
	tracing a program
	trapping errors
	Tree View list boxes
	trigonometry
	TRISTATE_BOX Directive
	TTY Utliity
	TXH()/TXW() Functions

	U
	UCK Utility
	UCL Utility
	UDEV Utility
	UID System Variable
	UltraFX
	UNIX
	UNTIL Directive
	user defined functions
	USER_LEX Directive
	utilities

	V
	VARDROP_BOX
	VARLIST_BOX
	Viewer Utility
	Views system
	V_SCROLLBAR

	W
	WAIT Directive
	WDX Tag
	WHILE Directive
	WHO System Variable
	wildcard characters
	windows and dialogues
	Windows ProvideX session
	WindX
	WINPRT and WINDEV print facilities
	WINPRT_SETUP
	WRITE Directive

	X
	XML Interface

	Y
	Z
	Zlib Compression

	ProvideX Language Reference
	ProvideX Installation Guide

